Erratum to the article ``Beurling's theorem for nilpotent Lie groups'' Osaka J. Math. 48 (2011), 127--147

IF 0.5 4区 数学 Q3 MATHEMATICS
K. Smaoui
{"title":"Erratum to the article ``Beurling's theorem for nilpotent Lie groups'' Osaka J. Math. 48 (2011), 127--147","authors":"K. Smaoui","doi":"10.18910/58911","DOIUrl":null,"url":null,"abstract":"Here W is a suitable cross-section for the generic coadjoint orbit s in g , the vector space dual ofg. The condition (1.1) of this theorem depends on the choice of t he bases for which the norm of x in G is defined. We must define the norm of x in G before stating Theorem 1.3. For this we must fix a bases of g, and then define the norm of x using this bases. In addition, we shouldn’t modify this bases t hroughout the proof of Theorem 1.3. This implies that, Remark 2.5.1 in the paper is n ot correct.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"53 1","pages":"285-287"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/58911","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Here W is a suitable cross-section for the generic coadjoint orbit s in g , the vector space dual ofg. The condition (1.1) of this theorem depends on the choice of t he bases for which the norm of x in G is defined. We must define the norm of x in G before stating Theorem 1.3. For this we must fix a bases of g, and then define the norm of x using this bases. In addition, we shouldn’t modify this bases t hroughout the proof of Theorem 1.3. This implies that, Remark 2.5.1 in the paper is n ot correct.
“幂零李群的Beurling定理”一文的勘误,大阪J.数学,48(2011),127—147
这里W是g中一般伴随轨道s的合适截面,g的向量空间对偶。这个定理的条件(1.1)取决于G中x的范数所定义的基的选择。在陈述定理1.3之前,我们必须先定义G中x的范数。为此我们必须确定g的基底,然后用这个基底定义x的模。此外,在定理1.3的证明过程中,我们不应该修改这个基t。这意味着,论文中2.5.1的注释是不正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信