CONSTRUCTION OF UNRAMIFIED EXTENSIONS WITH A PRESCRIBED GALOIS GROUP

Pub Date : 2015-10-01 DOI:10.18910/57688
KwangSeob Kim
{"title":"CONSTRUCTION OF UNRAMIFIED EXTENSIONS WITH A PRESCRIBED GALOIS GROUP","authors":"KwangSeob Kim","doi":"10.18910/57688","DOIUrl":null,"url":null,"abstract":"In this article, we shall prove that for any finite solvable gr oup G, there exist infinitely many abelian extensions K=Q and Galois extensionsM=Q such that the Galois group Gal( M=K ) is isomorphic toG and M=K is unramified. The difference between our result and [3, 4, 6, 7, 13] is that we have a base fiel d K which is not only Galois overQ, but also has very small degree compared to their results. We will also get another proof of Nomura’s work [9], which gives u a base field of smaller degree than Nomura’s. Finally for a given finite nona beli n simple groupG, we will show there exists an unramified extension M=K 0 such that the Galois group is isomorphic toG and K 0 has relatively small degree.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we shall prove that for any finite solvable gr oup G, there exist infinitely many abelian extensions K=Q and Galois extensionsM=Q such that the Galois group Gal( M=K ) is isomorphic toG and M=K is unramified. The difference between our result and [3, 4, 6, 7, 13] is that we have a base fiel d K which is not only Galois overQ, but also has very small degree compared to their results. We will also get another proof of Nomura’s work [9], which gives u a base field of smaller degree than Nomura’s. Finally for a given finite nona beli n simple groupG, we will show there exists an unramified extension M=K 0 such that the Galois group is isomorphic toG and K 0 has relatively small degree.
分享
查看原文
具有规定伽罗瓦群的非分枝扩展的构造
本文证明了对于任意有限可解群G,存在无穷多个阿贝耳扩展K=Q和伽罗瓦扩展sm =Q,使得伽罗瓦群Gal(M=K)同构于G, M=K不发散。我们的结果与[3,4,6,7,13]的不同之处在于,我们有一个基场K,它不仅是伽罗瓦overQ,而且与他们的结果相比,度很小。我们还将得到另一个野村工作[9]的证明,它给出了一个比野村更小度的基场。最后,对于简单群pg中给定的有限值,我们将证明存在一个非分枝扩展M=K 0,使得伽罗瓦群与g同构,且K 0具有较小的度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信