CONSTRUCTION OF UNRAMIFIED EXTENSIONS WITH A PRESCRIBED GALOIS GROUP

IF 0.5 4区 数学 Q3 MATHEMATICS
KwangSeob Kim
{"title":"CONSTRUCTION OF UNRAMIFIED EXTENSIONS WITH A PRESCRIBED GALOIS GROUP","authors":"KwangSeob Kim","doi":"10.18910/57688","DOIUrl":null,"url":null,"abstract":"In this article, we shall prove that for any finite solvable gr oup G, there exist infinitely many abelian extensions K=Q and Galois extensionsM=Q such that the Galois group Gal( M=K ) is isomorphic toG and M=K is unramified. The difference between our result and [3, 4, 6, 7, 13] is that we have a base fiel d K which is not only Galois overQ, but also has very small degree compared to their results. We will also get another proof of Nomura’s work [9], which gives u a base field of smaller degree than Nomura’s. Finally for a given finite nona beli n simple groupG, we will show there exists an unramified extension M=K 0 such that the Galois group is isomorphic toG and K 0 has relatively small degree.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"52 1","pages":"1039-1050"},"PeriodicalIF":0.5000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57688","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this article, we shall prove that for any finite solvable gr oup G, there exist infinitely many abelian extensions K=Q and Galois extensionsM=Q such that the Galois group Gal( M=K ) is isomorphic toG and M=K is unramified. The difference between our result and [3, 4, 6, 7, 13] is that we have a base fiel d K which is not only Galois overQ, but also has very small degree compared to their results. We will also get another proof of Nomura’s work [9], which gives u a base field of smaller degree than Nomura’s. Finally for a given finite nona beli n simple groupG, we will show there exists an unramified extension M=K 0 such that the Galois group is isomorphic toG and K 0 has relatively small degree.
具有规定伽罗瓦群的非分枝扩展的构造
本文证明了对于任意有限可解群G,存在无穷多个阿贝耳扩展K=Q和伽罗瓦扩展sm =Q,使得伽罗瓦群Gal(M=K)同构于G, M=K不发散。我们的结果与[3,4,6,7,13]的不同之处在于,我们有一个基场K,它不仅是伽罗瓦overQ,而且与他们的结果相比,度很小。我们还将得到另一个野村工作[9]的证明,它给出了一个比野村更小度的基场。最后,对于简单群pg中给定的有限值,我们将证明存在一个非分枝扩展M=K 0,使得伽罗瓦群与g同构,且K 0具有较小的度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信