THE CONVERGENCE OF THE EXPLORATION PROCESS FOR CRITICAL PERCOLATION ON THE k-OUT GRAPH

Pub Date : 2015-07-01 DOI:10.18910/57663
Y. Ota
{"title":"THE CONVERGENCE OF THE EXPLORATION PROCESS FOR CRITICAL PERCOLATION ON THE k-OUT GRAPH","authors":"Y. Ota","doi":"10.18910/57663","DOIUrl":null,"url":null,"abstract":"We consider the percolation on the k-out graph Gout(n, k). The critical probability of it is 1 k+ √ k2−k . Similarly to the random graph G(n, p), in a scaling window 1 k+ √ k2−k ( 1 + O(n−1/3) ) , the sequence of sizes of large components rescaled by n−2/3 converges to the excursion lengths of a Brownian motion with some drift. Also, the size of the largest component is O(log n) in the subcritical phase, and O(n) in the supercritical phase. The proof is based on the analysis of the exploration process.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the percolation on the k-out graph Gout(n, k). The critical probability of it is 1 k+ √ k2−k . Similarly to the random graph G(n, p), in a scaling window 1 k+ √ k2−k ( 1 + O(n−1/3) ) , the sequence of sizes of large components rescaled by n−2/3 converges to the excursion lengths of a Brownian motion with some drift. Also, the size of the largest component is O(log n) in the subcritical phase, and O(n) in the supercritical phase. The proof is based on the analysis of the exploration process.
分享
查看原文
临界渗流勘探过程在k-OUT图上的收敛性
我们考虑k-out图Gout(n, k)上的渗透。它的临界概率是1k +√k2−k。与随机图G(n, p)类似,在缩放窗口1k +√k2−k (1 + O(n−1/3))中,通过n−2/3重新缩放的大分量的大小序列收敛于具有一定漂移的布朗运动的偏移长度。亚临界相中最大组分的大小为O(log n),超临界相中最大组分的大小为O(n)。论证是基于对勘探过程的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信