Algebraic curves violating the slope inequalities

Pub Date : 2015-04-01 DOI:10.18910/57641
Takaomi Kato, G. Martens
{"title":"Algebraic curves violating the slope inequalities","authors":"Takaomi Kato, G. Martens","doi":"10.18910/57641","DOIUrl":null,"url":null,"abstract":"The gonality sequence ( dr )r 1 of a curve of genusg encodes, for < g, important information about the divisor theory of the curve. Mostly i is very difficult to compute this sequence. In general it grows rather modestly ( made precise below) but for curves with special moduli some “unexpected jumps” m ay occur in it. We first determine all integersg > 0 such that there is no such jump, for all curves of genusg. Secondly, we compute the leading numbers (up to r D 19) in the gonality sequence of an extremal space curve, i.e. of a space curve of maximal geometric genus w.r.t. its degree.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The gonality sequence ( dr )r 1 of a curve of genusg encodes, for < g, important information about the divisor theory of the curve. Mostly i is very difficult to compute this sequence. In general it grows rather modestly ( made precise below) but for curves with special moduli some “unexpected jumps” m ay occur in it. We first determine all integersg > 0 such that there is no such jump, for all curves of genusg. Secondly, we compute the leading numbers (up to r D 19) in the gonality sequence of an extremal space curve, i.e. of a space curve of maximal geometric genus w.r.t. its degree.
分享
查看原文
违反斜率不等式的代数曲线
广义曲线的正交序列(dr)r 1,对于< g,编码了关于该曲线的除数理论的重要信息。大多数情况下,计算这个序列是非常困难的。一般来说,它的增长相当适度(在下面精确地说明),但对于具有特殊模量的曲线,可能会出现一些“意外跳跃”m。我们首先确定所有的整数> 0,使得不存在这样的跳跃,对于所有的genusg曲线。其次,我们计算了极值空间曲线(即极大几何属空间曲线)的交性序列的前导数(不超过rd19)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信