On the kernels of the pro-l outer Galois representations associated to hyperbolic curves over number fields

Pub Date : 2015-07-01 DOI:10.18910/57635
Yuichiro Hoshi
{"title":"On the kernels of the pro-l outer Galois representations associated to hyperbolic curves over number fields","authors":"Yuichiro Hoshi","doi":"10.18910/57635","DOIUrl":null,"url":null,"abstract":"In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number eld and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order. Moreover, we discuss an application of the argument of the present paper to the study of the Fermat equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number eld and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order. Moreover, we discuss an application of the argument of the present paper to the study of the Fermat equation.
分享
查看原文
关于数字域上双曲曲线的前1外伽罗瓦表示法的核
本文讨论了双曲曲线在数域上的前- 1外伽罗瓦表示的核所对应的伽罗瓦扩展与双曲曲线的l-中点之间的关系。特别地,我们证明了对于某双曲曲线,所考虑的伽罗瓦扩展是由双曲曲线的l-适中点的坐标产生的。这可以看作是一个类似的事实,即对应于与阿贝尔变体相关的l进伽罗瓦表示的核的伽罗瓦扩展是由l-幂阶阿贝尔变体的扭转点的坐标生成的。此外,我们还讨论了本文的论点在费马方程研究中的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信