{"title":"On the kernels of the pro-l outer Galois representations associated to hyperbolic curves over number fields","authors":"Yuichiro Hoshi","doi":"10.18910/57635","DOIUrl":null,"url":null,"abstract":"In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number eld and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order. Moreover, we discuss an application of the argument of the present paper to the study of the Fermat equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number eld and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order. Moreover, we discuss an application of the argument of the present paper to the study of the Fermat equation.