Antonio Sánchez Herguedas;Adolfo Crespo Márquez;Francisco Rodrigo Muñoz
{"title":"Optimizing preventive maintenance over a finite planning horizon in a semi-Markov framework","authors":"Antonio Sánchez Herguedas;Adolfo Crespo Márquez;Francisco Rodrigo Muñoz","doi":"10.1093/imaman/dpaa026","DOIUrl":null,"url":null,"abstract":"This paper describes the optimization of preventive maintenance (PM) over a finite planning horizon in a semi-Markov framework. In this framework, the asset may be operating, and providing income for the asset owner, or not operating and undergoing PM, or not operating and undergoing corrective maintenance following failure. PM is triggered when the asset has been operating for τ time units. A number m of transitions specifies the finite horizon. This system is described with a set of recurrence relations, and their z-transform is used to determine the value of τ that maximizes the average accumulated reward over the horizon. We study under what conditions a solution can be found, and for those specific cases the solution τ* is calculated. Despite the complexity of the mathematical solution, the result obtained allows the analyst to provide a quick and easy-to-use tool for practical application in many real-world cases. To demonstrate this, the method has been implemented for a case study, and its accuracy and practical implementation were tested using Monte Carlo simulation and direct calculation.","PeriodicalId":56296,"journal":{"name":"IMA Journal of Management Mathematics","volume":"33 1","pages":"75-99"},"PeriodicalIF":1.9000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imaman/dpaa026","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Management Mathematics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9623703/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 1
Abstract
This paper describes the optimization of preventive maintenance (PM) over a finite planning horizon in a semi-Markov framework. In this framework, the asset may be operating, and providing income for the asset owner, or not operating and undergoing PM, or not operating and undergoing corrective maintenance following failure. PM is triggered when the asset has been operating for τ time units. A number m of transitions specifies the finite horizon. This system is described with a set of recurrence relations, and their z-transform is used to determine the value of τ that maximizes the average accumulated reward over the horizon. We study under what conditions a solution can be found, and for those specific cases the solution τ* is calculated. Despite the complexity of the mathematical solution, the result obtained allows the analyst to provide a quick and easy-to-use tool for practical application in many real-world cases. To demonstrate this, the method has been implemented for a case study, and its accuracy and practical implementation were tested using Monte Carlo simulation and direct calculation.
期刊介绍:
The mission of this quarterly journal is to publish mathematical research of the highest quality, impact and relevance that can be directly utilised or have demonstrable potential to be employed by managers in profit, not-for-profit, third party and governmental/public organisations to improve their practices. Thus the research must be quantitative and of the highest quality if it is to be published in the journal. Furthermore, the outcome of the research must be ultimately useful for managers. The journal also publishes novel meta-analyses of the literature, reviews of the "state-of-the art" in a manner that provides new insight, and genuine applications of mathematics to real-world problems in the form of case studies. The journal welcomes papers dealing with topics in Operational Research and Management Science, Operations Management, Decision Sciences, Transportation Science, Marketing Science, Analytics, and Financial and Risk Modelling.