A Hardware Accelerator for the Inference of a Convolutional Neural network

Edwin González, Walter D. Villamizar Luna, Carlos Augusto Fajardo Ariza
{"title":"A Hardware Accelerator for the Inference of a Convolutional Neural network","authors":"Edwin González, Walter D. Villamizar Luna, Carlos Augusto Fajardo Ariza","doi":"10.18359/rcin.4194","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNNs) are becoming increasingly popular in deep learning applications, e.g. image classification, speech recognition, medicine, to name a few. However, the CNN inference is computationally intensive and demanding a large among of memory resources. In this work is proposed a CNN inference hardware accelerator, which was implemented in a co-processing scheme. The aim is to reduce the hardware resources and achieve the better possible throughput. The design was implemented in the Digilent Arty Z7-20 development board, which is based on System on Chip (SoC) Zynq-7000 of Xilinx. Our implementation achieved a  of accuracy for the MNIST database using only 12-bits fixed-point format. The results show that the co-processing scheme operating at a conservative speed of 100 MHz can identify around 441 images per second, which is about 17% times faster than a 650 MHz - software implementation. It is difficult to compare our results against other implementations based on Field-Programmable Gate Array (FPGA), because the others implementations are not exactly like ours. However, some comparisons, regarding the logical resources used and accuracy, suggest that our work could be better than previous works.","PeriodicalId":31201,"journal":{"name":"Ciencia e Ingenieria Neogranadina","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia e Ingenieria Neogranadina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18359/rcin.4194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Convolutional Neural Networks (CNNs) are becoming increasingly popular in deep learning applications, e.g. image classification, speech recognition, medicine, to name a few. However, the CNN inference is computationally intensive and demanding a large among of memory resources. In this work is proposed a CNN inference hardware accelerator, which was implemented in a co-processing scheme. The aim is to reduce the hardware resources and achieve the better possible throughput. The design was implemented in the Digilent Arty Z7-20 development board, which is based on System on Chip (SoC) Zynq-7000 of Xilinx. Our implementation achieved a  of accuracy for the MNIST database using only 12-bits fixed-point format. The results show that the co-processing scheme operating at a conservative speed of 100 MHz can identify around 441 images per second, which is about 17% times faster than a 650 MHz - software implementation. It is difficult to compare our results against other implementations based on Field-Programmable Gate Array (FPGA), because the others implementations are not exactly like ours. However, some comparisons, regarding the logical resources used and accuracy, suggest that our work could be better than previous works.
卷积神经网络推理的硬件加速器
卷积神经网络(cnn)在深度学习应用中越来越受欢迎,例如图像分类、语音识别、医学等。然而,CNN推理是计算密集型的,需要大量的内存资源。本文提出了一种CNN推理硬件加速器,并以协同处理的方式实现。其目的是减少硬件资源并实现更好的吞吐量。该设计是在Digilent Arty Z7-20开发板上实现的,该开发板基于赛灵思的SoC Zynq-7000。我们的实现仅使用12位定点格式实现了MNIST数据库的精度。结果表明,在100mhz的保守速度下,协同处理方案每秒可以识别441张图像,比650 MHz的软件实现速度快17%左右。很难将我们的结果与其他基于现场可编程门阵列(FPGA)的实现进行比较,因为其他实现与我们的实现并不完全相同。然而,一些比较,关于逻辑资源的使用和准确性,表明我们的工作可能比以前的工作更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
9
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信