Portfolio rebalancing based on time series momentum and downside risk

IF 1.9 3区 工程技术 Q3 MANAGEMENT
Xiaoshi Guo;Sarah M Ryan
{"title":"Portfolio rebalancing based on time series momentum and downside risk","authors":"Xiaoshi Guo;Sarah M Ryan","doi":"10.1093/imaman/dpab037","DOIUrl":null,"url":null,"abstract":"To examine the familiar tradeoff between risk and return in financial investments, we use a rolling two-stage stochastic program to compare mean-risk optimization models with time series momentum strategies. In a backtest of allocating investment between a market index and a risk-free asset, we generate scenarios of future return according to a momentum-based stochastic process model. A new hybrid approach, time series momentum strategy controlling downside risk (TSMDR), frequently dominates traditional approaches by generating trading signals according to a modified momentum measure while setting the risky asset position to control the conditional value-at-risk (CVaR) of return. For insight into the outperformance of TSMDR, we decompose each strategy into two aspects, the trading signal and the asset allocation model that determines the risky asset position. We find that 1) weighted moving average can better capture the trend of the stock market than time series momentum computed as past 12-month excess return, 2) mean-risk strategies generally provide better returns whereas risk parity strategies have less investment risk and 3) controlling CVaR limits the investment risk better than controlling variance does.","PeriodicalId":56296,"journal":{"name":"IMA Journal of Management Mathematics","volume":"34 2","pages":"355-381"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8016797/10075382/10075383.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Management Mathematics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10075383/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

To examine the familiar tradeoff between risk and return in financial investments, we use a rolling two-stage stochastic program to compare mean-risk optimization models with time series momentum strategies. In a backtest of allocating investment between a market index and a risk-free asset, we generate scenarios of future return according to a momentum-based stochastic process model. A new hybrid approach, time series momentum strategy controlling downside risk (TSMDR), frequently dominates traditional approaches by generating trading signals according to a modified momentum measure while setting the risky asset position to control the conditional value-at-risk (CVaR) of return. For insight into the outperformance of TSMDR, we decompose each strategy into two aspects, the trading signal and the asset allocation model that determines the risky asset position. We find that 1) weighted moving average can better capture the trend of the stock market than time series momentum computed as past 12-month excess return, 2) mean-risk strategies generally provide better returns whereas risk parity strategies have less investment risk and 3) controlling CVaR limits the investment risk better than controlling variance does.
基于时间序列动量和下行风险的投资组合再平衡
为了检验金融投资中常见的风险和回报之间的权衡,我们使用滚动两阶段随机程序将平均风险优化模型与时间序列动量策略进行比较。在市场指数和无风险资产之间分配投资的回溯测试中,我们根据基于动量的随机过程模型生成未来回报的情景。一种新的混合方法,时间序列动量策略控制下行风险(TSMDR),通过根据修改的动量度量生成交易信号,同时设置风险资产头寸以控制回报的条件风险值(CVaR),经常主导传统方法。为了深入了解TSMDR的跑赢表现,我们将每种策略分解为两个方面,即交易信号和决定风险资产头寸的资产配置模型。我们发现,1)加权移动平均比过去12个月超额收益计算的时间序列动量更能捕捉股市的趋势,2)平均风险策略通常提供更好的回报,而风险平价策略的投资风险较小,3)控制CVaR比控制方差更好地限制投资风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Management Mathematics
IMA Journal of Management Mathematics OPERATIONS RESEARCH & MANAGEMENT SCIENCE-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
17.60%
发文量
15
审稿时长
>12 weeks
期刊介绍: The mission of this quarterly journal is to publish mathematical research of the highest quality, impact and relevance that can be directly utilised or have demonstrable potential to be employed by managers in profit, not-for-profit, third party and governmental/public organisations to improve their practices. Thus the research must be quantitative and of the highest quality if it is to be published in the journal. Furthermore, the outcome of the research must be ultimately useful for managers. The journal also publishes novel meta-analyses of the literature, reviews of the "state-of-the art" in a manner that provides new insight, and genuine applications of mathematics to real-world problems in the form of case studies. The journal welcomes papers dealing with topics in Operational Research and Management Science, Operations Management, Decision Sciences, Transportation Science, Marketing Science, Analytics, and Financial and Risk Modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信