{"title":"τSQWRL: A TSQL2-Like Query Language for Temporal Ontologies Generated from JSON Big Data","authors":"Zouhaier Brahmia;Fabio Grandi;Rafik Bouaziz","doi":"10.26599/BDMA.2022.9020044","DOIUrl":null,"url":null,"abstract":"Temporal ontologies allow to represent not only concepts, their properties, and their relationships, but also time-varying information through explicit versioning of definitions or through the four-dimensional perdurantist view. They are widely used to formally represent temporal data semantics in several applications belonging to different fields (e.g., Semantic Web, expert systems, knowledge bases, big data, and artificial intelligence). They facilitate temporal knowledge representation and discovery, with the support of temporal data querying and reasoning. However, there is no standard or consensual temporal ontology query language. In a previous work, we have proposed an approach named τJOWL (temporal OWL 2 from temporal JSON, where OWL 2 stands for “OWL 2 Web Ontology Language” and JSON stands for “JavaScript Object Notation”). τJOWL allows (1) to automatically build a temporal OWL 2 ontology of data, following the Closed World Assumption (CWA), from temporal JSON-based big data, and (2) to manage its incremental maintenance accommodating their evolution, in a temporal and multi-schema-version environment. In this paper, we propose a temporal ontology query language for rJOWL, named rSQWRL (temporal SQWRL), designed as a temporal extension of the ontology query language-Semantic Query-enhanced Web Rule Language (SQWRL). The new language has been inspired by the features of the consensual temporal query language TSQL2 (Temporal SQL2), well known in the temporal (relational) database community. The aim of the proposal is to enable and simplify the task of retrieving any desired ontology version or of specifying any (complex) temporal query on time-varying ontologies generated from time-varying big data. Some examples, in the Internet of Healthcare Things (IoHT) domain, are provided to motivate and illustrate our proposal.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 3","pages":"288-300"},"PeriodicalIF":7.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097652.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10097652/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal ontologies allow to represent not only concepts, their properties, and their relationships, but also time-varying information through explicit versioning of definitions or through the four-dimensional perdurantist view. They are widely used to formally represent temporal data semantics in several applications belonging to different fields (e.g., Semantic Web, expert systems, knowledge bases, big data, and artificial intelligence). They facilitate temporal knowledge representation and discovery, with the support of temporal data querying and reasoning. However, there is no standard or consensual temporal ontology query language. In a previous work, we have proposed an approach named τJOWL (temporal OWL 2 from temporal JSON, where OWL 2 stands for “OWL 2 Web Ontology Language” and JSON stands for “JavaScript Object Notation”). τJOWL allows (1) to automatically build a temporal OWL 2 ontology of data, following the Closed World Assumption (CWA), from temporal JSON-based big data, and (2) to manage its incremental maintenance accommodating their evolution, in a temporal and multi-schema-version environment. In this paper, we propose a temporal ontology query language for rJOWL, named rSQWRL (temporal SQWRL), designed as a temporal extension of the ontology query language-Semantic Query-enhanced Web Rule Language (SQWRL). The new language has been inspired by the features of the consensual temporal query language TSQL2 (Temporal SQL2), well known in the temporal (relational) database community. The aim of the proposal is to enable and simplify the task of retrieving any desired ontology version or of specifying any (complex) temporal query on time-varying ontologies generated from time-varying big data. Some examples, in the Internet of Healthcare Things (IoHT) domain, are provided to motivate and illustrate our proposal.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.