Extraction of Fetal Electrocardiogram by Combining Deep Learning and SVD-ICA-NMF Methods

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Said Ziani;Yousef Farhaoui;Mohammed Moutaib
{"title":"Extraction of Fetal Electrocardiogram by Combining Deep Learning and SVD-ICA-NMF Methods","authors":"Said Ziani;Yousef Farhaoui;Mohammed Moutaib","doi":"10.26599/BDMA.2022.9020035","DOIUrl":null,"url":null,"abstract":"This paper deals with detecting fetal electrocardiogram FECG signals from single-channel abdominal lead. It is based on the Convolutional Neural Network (CNN) combined with advanced mathematical methods, such as Independent Component Analysis (ICA), Singular Value Decomposition (SVD), and a dimension-reduction technique like Nonnegative Matrix Factorization (NMF). Due to the highly disproportionate frequency of the fetus's heart rate compared to the mother's, the time-scale representation clearly distinguishes the fetal electrical activity in terms of energy. Furthermore, we can disentangle the various components of fetal ECG, which serve as inputs to the CNN model to optimize the actual FECG signal, denoted by FECGr, which is recovered using the SVD-ICA process. The findings demonstrate the efficiency of this innovative approach, which may be deployed in real-time.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 3","pages":"301-310"},"PeriodicalIF":7.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10097649/10097661.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10097661/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with detecting fetal electrocardiogram FECG signals from single-channel abdominal lead. It is based on the Convolutional Neural Network (CNN) combined with advanced mathematical methods, such as Independent Component Analysis (ICA), Singular Value Decomposition (SVD), and a dimension-reduction technique like Nonnegative Matrix Factorization (NMF). Due to the highly disproportionate frequency of the fetus's heart rate compared to the mother's, the time-scale representation clearly distinguishes the fetal electrical activity in terms of energy. Furthermore, we can disentangle the various components of fetal ECG, which serve as inputs to the CNN model to optimize the actual FECG signal, denoted by FECGr, which is recovered using the SVD-ICA process. The findings demonstrate the efficiency of this innovative approach, which may be deployed in real-time.
深度学习与SVD-ICA-NMF相结合提取胎儿心电图
本文研究了单通道腹部导联胎儿心电图FECG信号的检测。它基于卷积神经网络(CNN),结合了独立分量分析(ICA)、奇异值分解(SVD)等先进的数学方法和非负矩阵分解(NMF)等降维技术。由于胎儿心率的频率与母亲心率的频率高度不相称,时间尺度表示可以清楚地从能量方面区分胎儿的电活动。此外,我们可以解开胎儿ECG的各种分量,这些分量用作CNN模型的输入,以优化实际的FECG信号,用FECGr表示,该信号使用SVD-ICA过程恢复。研究结果证明了这种创新方法的有效性,这种方法可以实时部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信