Jie Tong;Leilei Shi;Lu Liu;John Panneerselvam;Zixuan Han
{"title":"A novel influence maximization algorithm for a competitive environment based on social media data analytics","authors":"Jie Tong;Leilei Shi;Lu Liu;John Panneerselvam;Zixuan Han","doi":"10.26599/BDMA.2021.9020024","DOIUrl":null,"url":null,"abstract":"Online social networks are increasingly connecting people around the world. Influence maximization is a key area of research in online social networks, which identifies influential users during information dissemination. Most of the existing influence maximization methods only consider the transmission of a single channel, but real-world networks mostly include multiple channels of information transmission with competitive relationships. The problem of influence maximization in an environment involves selecting the seed node set for certain competitive information, so that it can avoid the influence of other information, and ultimately affect the largest set of nodes in the network. In this paper, the influence calculation of nodes is achieved according to the local community discovery algorithm, which is based on community dispersion and the characteristics of dynamic community structure. Furthermore, considering two various competitive information dissemination cases as an example, a solution is designed for self-interested information based on the assumption that the seed node set of competitive information is known, and a novel influence maximization algorithm of node avoidance based on user interest is proposed. Experiments conducted based on real-world Twitter dataset demonstrates the efficiency of our proposed algorithm in terms of accuracy and time against notable influence maximization algorithms.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"5 2","pages":"130-139"},"PeriodicalIF":7.7000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/9691293/09691300.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/9691300/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Online social networks are increasingly connecting people around the world. Influence maximization is a key area of research in online social networks, which identifies influential users during information dissemination. Most of the existing influence maximization methods only consider the transmission of a single channel, but real-world networks mostly include multiple channels of information transmission with competitive relationships. The problem of influence maximization in an environment involves selecting the seed node set for certain competitive information, so that it can avoid the influence of other information, and ultimately affect the largest set of nodes in the network. In this paper, the influence calculation of nodes is achieved according to the local community discovery algorithm, which is based on community dispersion and the characteristics of dynamic community structure. Furthermore, considering two various competitive information dissemination cases as an example, a solution is designed for self-interested information based on the assumption that the seed node set of competitive information is known, and a novel influence maximization algorithm of node avoidance based on user interest is proposed. Experiments conducted based on real-world Twitter dataset demonstrates the efficiency of our proposed algorithm in terms of accuracy and time against notable influence maximization algorithms.
期刊介绍:
Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge.
Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications.
Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more.
With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.