Spheres, symmetric products, and quotient of hyperspaces of continua

IF 0.3 Q4 MATHEMATICS
E. Casta, ñeda-Alvarado, J. Sánchez-Martínez
{"title":"Spheres, symmetric products, and quotient of hyperspaces of continua","authors":"E. Casta, ñeda-Alvarado, J. Sánchez-Martínez","doi":"10.21099/tkbjm/1407938673","DOIUrl":null,"url":null,"abstract":". A continuum means a nonempty, compact and connected metric space. Given a continuum X , the symbols F n ð X Þ and C 1 ð X Þ denotes the hyperspace of all subsets of X with at most n points and the hyperspace of subcontinua of X , respectively. If n > 1, we consider the quotient spaces SF n 1 ð X Þ ¼ F n ð X Þ = F 1 ð X Þ and C 1 ð X Þ = F 1 ð X Þ obtained by shrinking F 1 ð X Þ to a point in F n ð X Þ and C 1 ð X Þ , re-spectively. In this paper, we study the continua X such that SF n 1 ð X Þ is homeomorphic to C 1 ð X Þ = F 1 ð X Þ and we analyze when the spaces F n ð X Þ and SF n 1 ð X Þ are homeomorphic to some sphere.","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"38 1","pages":"75-84"},"PeriodicalIF":0.3000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21099/tkbjm/1407938673","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/tkbjm/1407938673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. A continuum means a nonempty, compact and connected metric space. Given a continuum X , the symbols F n ð X Þ and C 1 ð X Þ denotes the hyperspace of all subsets of X with at most n points and the hyperspace of subcontinua of X , respectively. If n > 1, we consider the quotient spaces SF n 1 ð X Þ ¼ F n ð X Þ = F 1 ð X Þ and C 1 ð X Þ = F 1 ð X Þ obtained by shrinking F 1 ð X Þ to a point in F n ð X Þ and C 1 ð X Þ , re-spectively. In this paper, we study the continua X such that SF n 1 ð X Þ is homeomorphic to C 1 ð X Þ = F 1 ð X Þ and we analyze when the spaces F n ð X Þ and SF n 1 ð X Þ are homeomorphic to some sphere.
连续体超空间的球、对称积和商
。连续统是指一个非空的、紧的、连通的度量空间。给定连续体X,符号fn ð X Þ和c1 ð X Þ分别表示X的所有最多n个点的子集的超空间和X的次连续体的超空间。如果n > 1,我们考虑商空间SF n 1 ð X Þ¼F n ð X Þ = F 1 ð X Þ和C 1 ð X Þ = F 1 ð X Þ分别将F 1 ð X Þ缩小到F n ð X Þ和C 1 ð X Þ中的一个点。本文研究了连续体X使SF n 1 ð X Þ同胚于C 1 ð X Þ = F 1 ð X Þ,并分析了空间F n ð X Þ与SF n 1 ð X Þ同胚于某球的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信