On the Fourier coefficients of Hilbert modular forms of half-integral weight over arbitrary algebraic number fields

IF 0.3 Q4 MATHEMATICS
H. Kojima
{"title":"On the Fourier coefficients of Hilbert modular forms of half-integral weight over arbitrary algebraic number fields","authors":"H. Kojima","doi":"10.21099/TKBJM/1373893402","DOIUrl":null,"url":null,"abstract":"We denote by Z, Q, R and C the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. We write F for an algebraic number field, d for the different of F relative to Q, o for the integral ring of F . F has r1 real archimedian primes and r2 imaginary archimedian primes. σi : F → R (1 ≤ i ≤ r1) are the mutually distinct embeddings of F to R, and σr1+j : F → C (1 ≤ j ≤ r2) are the mutually distinct imaginary conjugate embeddings of F to C such that σr1+j 6= σr1+l, σr1+j 6= σr1+l (1 ≤ j, l ≤ r2, j 6= l), σr1+j 6= σr1+j (1 ≤ j ≤ r2) and σi 6= σr1+j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). For α ∈ F , we put α = σi(α) and α (r1+j) = σr1+j(α) (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). Let H = R + Ri + Rj + Rk be the Hamilton quaternion algebra, H = {z = z + wj ∈ H|z ∈ C, w > 0}, H = {z = x + iy|x ∈ R, y > 0} and D = H1 × H2 .","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"29 1","pages":"1-11"},"PeriodicalIF":0.3000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21099/TKBJM/1373893402","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/TKBJM/1373893402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We denote by Z, Q, R and C the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. We write F for an algebraic number field, d for the different of F relative to Q, o for the integral ring of F . F has r1 real archimedian primes and r2 imaginary archimedian primes. σi : F → R (1 ≤ i ≤ r1) are the mutually distinct embeddings of F to R, and σr1+j : F → C (1 ≤ j ≤ r2) are the mutually distinct imaginary conjugate embeddings of F to C such that σr1+j 6= σr1+l, σr1+j 6= σr1+l (1 ≤ j, l ≤ r2, j 6= l), σr1+j 6= σr1+j (1 ≤ j ≤ r2) and σi 6= σr1+j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). For α ∈ F , we put α = σi(α) and α (r1+j) = σr1+j(α) (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). Let H = R + Ri + Rj + Rk be the Hamilton quaternion algebra, H = {z = z + wj ∈ H|z ∈ C, w > 0}, H = {z = x + iy|x ∈ R, y > 0} and D = H1 × H2 .
任意代数数域上半积分权的Hilbert模形式的傅里叶系数
我们用Z、Q、R、C分别表示有理数环、有理数域、实数域和复数域。F表示代数数域,d表示F相对于Q的差,o表示F的积分环。F有r1个实数阿基米德素数和r2个虚数阿基米德素数。σi: F→R(1≤i≤r1)是F到R的互异嵌入,σr1+j: F→C(1≤j≤r2)是F到C的互异虚共轭嵌入,使得σr1+j 6= σr1+l(1≤j, l≤r2, j6 = l), σr1+j 6= σr1+j(1≤j≤r2), σi 6= σr1+j(1≤i≤r1, 1≤j≤r2), σi 6= σr1+j(1≤i≤r1, 1≤j≤r2)。为α∈F,我们把α=σ(α)和α(r1 + j) =σr1 + j(α)(1≤≤r1, r2 j 1≤≤)。设H = R + Ri + Rj + Rk为Hamilton四元数代数,H = {z = z + wj∈H|z∈C, w >}, H = {z = x + iy|x∈R, y > 0}, D = H1 × H2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信