Single Document Automatic Text Summarization using Term Frequency-Inverse Document Frequency (TF-IDF)

ComTech Pub Date : 2016-12-31 DOI:10.21512/COMTECH.V7I4.3746
Hans Christian, Mikhael Pramodana Agus, Derwin Suhartono
{"title":"Single Document Automatic Text Summarization using Term Frequency-Inverse Document Frequency (TF-IDF)","authors":"Hans Christian, Mikhael Pramodana Agus, Derwin Suhartono","doi":"10.21512/COMTECH.V7I4.3746","DOIUrl":null,"url":null,"abstract":"The increasing availability of online information has triggered an intensive research in the area of automatic text summarization within the Natural Language Processing (NLP). Text summarization reduces the text by removing the less useful information which helps the reader to find the required information quickly. There are many kinds of algorithms that can be used to summarize the text. One of them is TF-IDF (TermFrequency-Inverse Document Frequency). This research aimed to produce an automatic text summarizer implemented with TF-IDF algorithm and to compare it with other various online source of automatic text summarizer. To evaluate the summary produced from each summarizer, The F-Measure as the standard comparison value had been used. The result of this research produces 67% of accuracy with three data samples which are higher compared to the other online summarizers.","PeriodicalId":31095,"journal":{"name":"ComTech","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"159","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ComTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21512/COMTECH.V7I4.3746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 159

Abstract

The increasing availability of online information has triggered an intensive research in the area of automatic text summarization within the Natural Language Processing (NLP). Text summarization reduces the text by removing the less useful information which helps the reader to find the required information quickly. There are many kinds of algorithms that can be used to summarize the text. One of them is TF-IDF (TermFrequency-Inverse Document Frequency). This research aimed to produce an automatic text summarizer implemented with TF-IDF algorithm and to compare it with other various online source of automatic text summarizer. To evaluate the summary produced from each summarizer, The F-Measure as the standard comparison value had been used. The result of this research produces 67% of accuracy with three data samples which are higher compared to the other online summarizers.
基于词频-逆文档频率(TF-IDF)的单文档自动文本摘要
随着网络信息的日益丰富,在自然语言处理(NLP)领域中,文本自动摘要的研究已经引起了广泛的关注。文本摘要通过删除不太有用的信息来减少文本,从而帮助读者快速找到所需的信息。有很多种算法可以用来总结文本。其中之一是TF-IDF (TermFrequency-Inverse Document Frequency)。本研究旨在制作一个使用TF-IDF算法实现的自动文本摘要器,并将其与其他各种在线自动文本摘要器进行比较。为了评估每个总结器产生的总结,使用了F-Measure作为标准比较值。这项研究的结果产生了67%的准确度与三个数据样本相比,其他在线总结器更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信