PowerFDNet: Deep Learning-Based Stealthy False Data Injection Attack Detection for AC-Model Transmission Systems

Xuefei Yin;Yanming Zhu;Yi Xie;Jiankun Hu
{"title":"PowerFDNet: Deep Learning-Based Stealthy False Data Injection Attack Detection for AC-Model Transmission Systems","authors":"Xuefei Yin;Yanming Zhu;Yi Xie;Jiankun Hu","doi":"10.1109/OJCS.2022.3199755","DOIUrl":null,"url":null,"abstract":"Smart grids are vulnerable to stealthy false data injection attacks (SFDIAs), as SFDIAs can bypass residual-based bad data detection mechanisms. Methods based on deep learning technology have shown promising accuracy in the detection of SFDIAs. However, most existing methods rely on the temporal structure of a sequence of measurements but do not take account of the spatial structure between buses and transmission lines. To address this issue, we propose a spatiotemporal deep network, PowerFDNet, for the SFDIA detection in AC-model power grids. The PowerFDNet consists of two sub-architectures: spatial architecture (SA) and temporal architecture (TA). The SA is aimed at extracting representations of bus/line measurements and modeling the spatial structure based on their representations. The TA is aimed at modeling the temporal structure of a sequence of measurements. Therefore, the proposed PowerFDNet can effectively model the spatiotemporal structure of measurements. Case studies on the detection of SFDIAs on the benchmark smart grids show that the PowerFDNet achieved significant improvement compared with the state-of-the-art SFDIA detection methods. In addition, an IoT-oriented lightweight prototype of size 52 MB is implemented and tested for mobile devices, which demonstrates the potential applications on mobile devices. The trained model will be available at [Online]. Available: \n<uri>https://github.com/FrankYinXF/PowerFDNet</uri>\n.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"3 ","pages":"149-161"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782664/9682503/09861714.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9861714/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Smart grids are vulnerable to stealthy false data injection attacks (SFDIAs), as SFDIAs can bypass residual-based bad data detection mechanisms. Methods based on deep learning technology have shown promising accuracy in the detection of SFDIAs. However, most existing methods rely on the temporal structure of a sequence of measurements but do not take account of the spatial structure between buses and transmission lines. To address this issue, we propose a spatiotemporal deep network, PowerFDNet, for the SFDIA detection in AC-model power grids. The PowerFDNet consists of two sub-architectures: spatial architecture (SA) and temporal architecture (TA). The SA is aimed at extracting representations of bus/line measurements and modeling the spatial structure based on their representations. The TA is aimed at modeling the temporal structure of a sequence of measurements. Therefore, the proposed PowerFDNet can effectively model the spatiotemporal structure of measurements. Case studies on the detection of SFDIAs on the benchmark smart grids show that the PowerFDNet achieved significant improvement compared with the state-of-the-art SFDIA detection methods. In addition, an IoT-oriented lightweight prototype of size 52 MB is implemented and tested for mobile devices, which demonstrates the potential applications on mobile devices. The trained model will be available at [Online]. Available: https://github.com/FrankYinXF/PowerFDNet .
PowerFDNet:基于深度学习的交流输电系统隐式虚假数据注入攻击检测
智能电网容易受到隐蔽的虚假数据注入攻击(SFDIA),因为SFDIA可以绕过基于残差的坏数据检测机制。基于深度学习技术的方法在SFDIA的检测中显示出了良好的准确性。然而,大多数现有的方法依赖于测量序列的时间结构,但没有考虑总线和输电线路之间的空间结构。为了解决这个问题,我们提出了一种时空深度网络PowerFDNet,用于交流模型电网中的SFDIA检测。PowerFDNet由两个子体系结构组成:空间体系结构(SA)和时间体系结构(TA)。SA旨在提取总线/线路测量的表示,并基于其表示对空间结构进行建模。TA旨在对测量序列的时间结构进行建模。因此,所提出的PowerFDNet可以有效地对测量的时空结构进行建模。在基准智能电网上检测SFDIA的案例研究表明,与最先进的SFDIA检测方法相比,PowerFDNet实现了显著的改进。此外,还为移动设备实现并测试了一个52 MB大小的面向物联网的轻量级原型,展示了其在移动设备上的潜在应用。培训后的模型将在[在线]上提供。可用:https://github.com/FrankYinXF/PowerFDNet.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信