{"title":"Does the high-frequency data is helpful for forecasting Russian inflation?","authors":"D. Tretyakov, N. Fokin","doi":"10.21638/spbu05.2021.206","DOIUrl":null,"url":null,"abstract":"Due to the fact that at the end of 2014 the Central Bank made the transition to a new monetary policy regime for Russia — the inflation targeting regime, the problem of forecasting inflation rates became more relevant than ever. In the new monetary policy regime, it is important for the Bank of Russia to estimate the future inflation rate as quickly as possible in order to take measures to return inflation to the target level. In addition, for effective monetary policy, the households must trust the actions of monetary authorities and they must be aware of the future dynamics of inflation. Thus, to manage inflationary expectations of economic agents, the Central Bank should actively use the information channel, publish accurate forecasts of consumer price growth. The aim of this work is to build a model for nowcasting, as well as short-term forecasting of the rate of Russian inflation using high-frequency data. Using this type of data in models for forecasting is very promising, since this approach allows to use more information about the dynamics of macroeconomic indicators. The paper shows that using MIDAS model with weekly frequency series (RUB/USD exchange rate, the interbank rate MIACR, oil prices) has more accurate forecast of monthly inflation compared to several basic models, which only use low-frequency data.","PeriodicalId":41730,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta-Ekonomika-St Petersburg University Journal of Economic Studies","volume":"22 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta-Ekonomika-St Petersburg University Journal of Economic Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/spbu05.2021.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the fact that at the end of 2014 the Central Bank made the transition to a new monetary policy regime for Russia — the inflation targeting regime, the problem of forecasting inflation rates became more relevant than ever. In the new monetary policy regime, it is important for the Bank of Russia to estimate the future inflation rate as quickly as possible in order to take measures to return inflation to the target level. In addition, for effective monetary policy, the households must trust the actions of monetary authorities and they must be aware of the future dynamics of inflation. Thus, to manage inflationary expectations of economic agents, the Central Bank should actively use the information channel, publish accurate forecasts of consumer price growth. The aim of this work is to build a model for nowcasting, as well as short-term forecasting of the rate of Russian inflation using high-frequency data. Using this type of data in models for forecasting is very promising, since this approach allows to use more information about the dynamics of macroeconomic indicators. The paper shows that using MIDAS model with weekly frequency series (RUB/USD exchange rate, the interbank rate MIACR, oil prices) has more accurate forecast of monthly inflation compared to several basic models, which only use low-frequency data.