Improved general slice method of limit equilibrium for slope stability analysis

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
Shiguo Xiao, Tingjun Chen
{"title":"Improved general slice method of limit equilibrium for slope stability analysis","authors":"Shiguo Xiao, Tingjun Chen","doi":"10.18690/actageotechslov.18.1.55-64.2021","DOIUrl":null,"url":null,"abstract":"For traditional slice methods of limit equilibrium used to analyze slope stability, some hypothetical conditions on interslice force are generally introduced to solve the problem. In order to reduce the defect theoretically due to the related hypothesis, more rigorous constraints of interslice force are completely considered in light of static equilibrium conditions and energy dissipation principle of the interface between two adjacent slices. Without hypothesis of interslice force, the slope stability analysis is transformed consistently into a non-linear programming problem to be solved. So, a generally improved solution of slice method of limit equilibrium to slope stability is put forward. In particular, influence of the dilation angle of soil on slope stability can be involved in the method. The proposed method can be utilized for any slopes with arbitrary slip surfaces.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":"56 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/actageotechslov.18.1.55-64.2021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

Abstract

For traditional slice methods of limit equilibrium used to analyze slope stability, some hypothetical conditions on interslice force are generally introduced to solve the problem. In order to reduce the defect theoretically due to the related hypothesis, more rigorous constraints of interslice force are completely considered in light of static equilibrium conditions and energy dissipation principle of the interface between two adjacent slices. Without hypothesis of interslice force, the slope stability analysis is transformed consistently into a non-linear programming problem to be solved. So, a generally improved solution of slice method of limit equilibrium to slope stability is put forward. In particular, influence of the dilation angle of soil on slope stability can be involved in the method. The proposed method can be utilized for any slopes with arbitrary slip surfaces.
边坡稳定分析中极限平衡的改进一般切片法
传统的极限平衡切片法分析边坡稳定性时,通常引入一些假设的片间力条件来求解。为了减少相关假设在理论上的缺陷,从静力平衡条件和相邻两片界面的能量耗散原理出发,充分考虑了更严格的片间力约束。在没有夹层力假设的情况下,边坡稳定性分析始终转化为待求解的非线性规划问题。在此基础上,提出了极限平衡切片法边坡稳定的一般改进解。该方法特别考虑了土体膨胀角对边坡稳定性的影响。该方法适用于具有任意滑移面的任何边坡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信