Predicting Molybdenum Adsorption by Soils Using Soil Chemical Parameters in the Constant Capacitance Model

IF 2.4 3区 农林科学 Q2 SOIL SCIENCE
S. Goldberg, S. Lesch, D. Suarez
{"title":"Predicting Molybdenum Adsorption by Soils Using Soil Chemical Parameters in the Constant Capacitance Model","authors":"S. Goldberg, S. Lesch, D. Suarez","doi":"10.2136/sssaj2003.0970","DOIUrl":null,"url":null,"abstract":"cated that Mo adsorption on calcium carbonate was low, reanalysis of their data indicated that adsorption on The constant capacitance model, a chemical surface complexation this CaCO3 at pH 7.1 was comparable in magnitude to model, was applied to Mo adsorption on 36 samples from 27 soil series selected for variation in soil properties. A general regression adsorption on illite at pH 7.0 and three times as great model was developed for predicting soil Mo surface complexation as adsorption on montmorillonite at pH 7.0 and wellconstants from four independently measured soil chemical characteriscrystallized kaolinite at pH 6.8. tics: cation exchange capacity, organic carbon content, inorganic carMolybdenum adsorption on soils and soil minerals bon content, and iron oxide content. The constant capacitance model has been described by various modeling approaches. was well able to predict Mo adsorption on all 36 soil samples. IncorpoSuch models include the empirical Freundlich, Langration of these regression prediction equations into chemical speciamuir, and Temkin adsorption isotherms (Reisenauer et tion–transport models will allow simulation of soil solution Mo conal., 1962; Theng, 1971; Karimian and Cox, 1978; Phelan centrations under diverse environmental and agricultural management and Mattigod, 1984; Xie and MacKenzie, 1991; Goldconditions without requiring soil specific adsorption data and subseberg and Forster, 1998) and surface complexation modquent parameter optimization. els: constant capacitance model (Motta and Miranda, 1989; Goldberg et al., 1996, 1998), triple layer model (Goldberg et al., 1998; Wu et al., 2001), Stern variable M is both a micronutrient essential for surface charge-variable surface potential model (Mcplant growth and a potentially toxic trace eleKenzie, 1983), and CD-MUSIC model (Bourikas et al., ment, especially for grazing animals. Molybdenum defi2001). Parameters from empirical models are only valid ciencies have been reported for many agronomic crops for the conditions under which the experiment was conthroughout the world (Murphy and Walsh, 1972). Moducted. Surface complexation models are chemical modlybdenum occurs in an anionic form that is readily taken els that utilize defined surface species, chemical reacup by forage plants and can accumulate to levels detritions, mass balances, and charge balances and contain mental to grazing ruminant animals (Reisenauer et al., molecular features that can be given thermodynamic 1973). Cattle grazing in some areas of the San Joaquin significance (Sposito, 1983). Valley of California, especially on legumes, were found Chemical modeling of Mo adsorption at the mineral– to be adversely affected by elevated soil Mo content solution interface has been successful using the constant mainly on alkaline soils (Barshad, 1948). On the other capacitance model (Motta and Miranda, 1989; Goldberg hand, soils in northwest Oregon producing pastures with et al., 1996, 1998) and the triple layer model (Goldberg high Mo content are acid with a pH in the range of 4.4 et al., 1998) for oxides, clay minerals, and soils. In these to 5.3 (Kubota et al., 1967). Legumes are efficient Mo studies, Mo adsorption was described as forming monoaccumulators, especially at high soil pH, whereas most dentate surface complexes. In the triple layer modeling grasses and grain crops do not accumulate Mo to toxic studies, Mo adsorption on Fe and Al oxides, kaolinite, levels (O’Connor et al., 2001). Molybdenum exerts its illite, and two soils was best described by an innertoxic effect on grazing cattle by inducing a copper defisphere adsorption mechanism. Molybdenum adsorption ciency that is especially pronounced in the presence of on montmorillonite, on the other hand, was best desulfur. The adverse effects of high Mo can be mitigated scribed by an outer-sphere adsorption mechanism (Goldby Cu supplementation of the animals (O’Connor et berg et al., 1998). Molybdenum adsorption on titanium al., 2001). Careful quantification of soil solution Mo oxide was described with the CD-MUSIC model using concentrations and characterization of Mo adsorption a mixture of monodentate and bidentate surface comreactions on soil mineral surfaces is needed. plexes (Bourikas et al., 2001). Availability of Mo to plants is affected by a variety Although it is chemically reasonable for the dominant of factors including soil solution pH, soil texture, soil solution species to be dominant on the exchange commoisture, temperature, oxide content, organic matter plex, there is no necessary 1:1 correspondence between content, and clay mineralogy (Reisenauer et al., 1973). solution and surface species (Sposito, 1983). The domiMolybdenum becomes more available with increasing nant Mo species in solution is MoO2 4 over most of the solution pH. The dominant Mo adsorbing surfaces in pH range: pKa1 4.00, pKa2 4.24 (Lindsay, 1979). soil are oxides, clay minerals, and organic matter (GoldAttenuated total reflectance Fourier transform infraberg et al., 1996). Although Goldberg et al. (1996) indired and diffuse reflectance infrared Fourier transform spectroscopy have provided direct evidence for the presUSDA-ARS, George E. Brown Jr. Salinity Lab., 450 W. Big Springs Road, Riverside, CA 92507. Contribution from the George E. Brown ence of both monodentate and bidentate Mo surface Jr., Salinity Lab. Received 29 Oct. 2001. *Corresponding author complexes adsorbed on the surface of amorphous Fe (sgoldberg@ussl.ars.usda.gov). hydroxide (Goldberg et al., 1998). However, these studies are not definitive for typical soil conditions because Published in Soil Sci. Soc. Am. J. 66:1836–1842 (2002).","PeriodicalId":22142,"journal":{"name":"Soil Science Society of America Journal","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science Society of America Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2136/sssaj2003.0970","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 62

Abstract

cated that Mo adsorption on calcium carbonate was low, reanalysis of their data indicated that adsorption on The constant capacitance model, a chemical surface complexation this CaCO3 at pH 7.1 was comparable in magnitude to model, was applied to Mo adsorption on 36 samples from 27 soil series selected for variation in soil properties. A general regression adsorption on illite at pH 7.0 and three times as great model was developed for predicting soil Mo surface complexation as adsorption on montmorillonite at pH 7.0 and wellconstants from four independently measured soil chemical characteriscrystallized kaolinite at pH 6.8. tics: cation exchange capacity, organic carbon content, inorganic carMolybdenum adsorption on soils and soil minerals bon content, and iron oxide content. The constant capacitance model has been described by various modeling approaches. was well able to predict Mo adsorption on all 36 soil samples. IncorpoSuch models include the empirical Freundlich, Langration of these regression prediction equations into chemical speciamuir, and Temkin adsorption isotherms (Reisenauer et tion–transport models will allow simulation of soil solution Mo conal., 1962; Theng, 1971; Karimian and Cox, 1978; Phelan centrations under diverse environmental and agricultural management and Mattigod, 1984; Xie and MacKenzie, 1991; Goldconditions without requiring soil specific adsorption data and subseberg and Forster, 1998) and surface complexation modquent parameter optimization. els: constant capacitance model (Motta and Miranda, 1989; Goldberg et al., 1996, 1998), triple layer model (Goldberg et al., 1998; Wu et al., 2001), Stern variable M is both a micronutrient essential for surface charge-variable surface potential model (Mcplant growth and a potentially toxic trace eleKenzie, 1983), and CD-MUSIC model (Bourikas et al., ment, especially for grazing animals. Molybdenum defi2001). Parameters from empirical models are only valid ciencies have been reported for many agronomic crops for the conditions under which the experiment was conthroughout the world (Murphy and Walsh, 1972). Moducted. Surface complexation models are chemical modlybdenum occurs in an anionic form that is readily taken els that utilize defined surface species, chemical reacup by forage plants and can accumulate to levels detritions, mass balances, and charge balances and contain mental to grazing ruminant animals (Reisenauer et al., molecular features that can be given thermodynamic 1973). Cattle grazing in some areas of the San Joaquin significance (Sposito, 1983). Valley of California, especially on legumes, were found Chemical modeling of Mo adsorption at the mineral– to be adversely affected by elevated soil Mo content solution interface has been successful using the constant mainly on alkaline soils (Barshad, 1948). On the other capacitance model (Motta and Miranda, 1989; Goldberg hand, soils in northwest Oregon producing pastures with et al., 1996, 1998) and the triple layer model (Goldberg high Mo content are acid with a pH in the range of 4.4 et al., 1998) for oxides, clay minerals, and soils. In these to 5.3 (Kubota et al., 1967). Legumes are efficient Mo studies, Mo adsorption was described as forming monoaccumulators, especially at high soil pH, whereas most dentate surface complexes. In the triple layer modeling grasses and grain crops do not accumulate Mo to toxic studies, Mo adsorption on Fe and Al oxides, kaolinite, levels (O’Connor et al., 2001). Molybdenum exerts its illite, and two soils was best described by an innertoxic effect on grazing cattle by inducing a copper defisphere adsorption mechanism. Molybdenum adsorption ciency that is especially pronounced in the presence of on montmorillonite, on the other hand, was best desulfur. The adverse effects of high Mo can be mitigated scribed by an outer-sphere adsorption mechanism (Goldby Cu supplementation of the animals (O’Connor et berg et al., 1998). Molybdenum adsorption on titanium al., 2001). Careful quantification of soil solution Mo oxide was described with the CD-MUSIC model using concentrations and characterization of Mo adsorption a mixture of monodentate and bidentate surface comreactions on soil mineral surfaces is needed. plexes (Bourikas et al., 2001). Availability of Mo to plants is affected by a variety Although it is chemically reasonable for the dominant of factors including soil solution pH, soil texture, soil solution species to be dominant on the exchange commoisture, temperature, oxide content, organic matter plex, there is no necessary 1:1 correspondence between content, and clay mineralogy (Reisenauer et al., 1973). solution and surface species (Sposito, 1983). The domiMolybdenum becomes more available with increasing nant Mo species in solution is MoO2 4 over most of the solution pH. The dominant Mo adsorbing surfaces in pH range: pKa1 4.00, pKa2 4.24 (Lindsay, 1979). soil are oxides, clay minerals, and organic matter (GoldAttenuated total reflectance Fourier transform infraberg et al., 1996). Although Goldberg et al. (1996) indired and diffuse reflectance infrared Fourier transform spectroscopy have provided direct evidence for the presUSDA-ARS, George E. Brown Jr. Salinity Lab., 450 W. Big Springs Road, Riverside, CA 92507. Contribution from the George E. Brown ence of both monodentate and bidentate Mo surface Jr., Salinity Lab. Received 29 Oct. 2001. *Corresponding author complexes adsorbed on the surface of amorphous Fe (sgoldberg@ussl.ars.usda.gov). hydroxide (Goldberg et al., 1998). However, these studies are not definitive for typical soil conditions because Published in Soil Sci. Soc. Am. J. 66:1836–1842 (2002).
用恒电容模型中的土壤化学参数预测土壤对钼的吸附
注意到Mo在碳酸钙上的吸附较低,对他们的数据进行再分析表明,在恒定电容模型上的吸附是一种化学表面络合模型,该模型在pH值为7.1的CaCO3与模型的量级相当,适用于27个土壤系列中36个样品的Mo吸附。建立了pH 7.0时伊利石的一般回归吸附和pH 7.0时蒙脱土吸附的三倍大模型,并从pH 6.8时四个独立测量的土壤化学特征结晶高岭石的井常数中预测土壤Mo表面络合。tics:阳离子交换容量,有机碳含量,无机碳钼在土壤上的吸附,土壤矿物质碳含量,氧化铁含量。恒电容模型已被各种建模方法所描述。能够很好地预测钼在所有36个土壤样品上的吸附。这些模型包括经验Freundlich,将这些回归预测方程转化为化学模型,以及Temkin吸附等温线(Reisenauer et - transport模型将允许模拟土壤溶液Mo)。, 1962;按照推动,1971;Karimian and Cox, 1978;不同环境和农业管理下的Phelan集中度和Mattigod, 1984;Xie and MacKenzie, 1991;金条件下不需要土壤特定吸附数据和subseberg和Forster, 1998)和表面络合模态参数优化。els:恒电容模型(Motta and Miranda, 1989;Goldberg et al., 1996,1998),三层模型(Goldberg et al., 1998;Wu et al., 2001), Stern变量M既是表面电荷-可变表面电位模型(Mcplant生长和潜在毒性痕量eleKenzie, 1983)和CD-MUSIC模型(Bourikas et al., ment)所必需的微量营养素,特别是对于放牧动物。钼defi2001)。经验模型的参数只有在世界各地进行实验的条件下才有效(Murphy和Walsh, 1972)。Moducted。表面络合模型是以阴离子形式存在的化学钼,它很容易被吸收,利用确定的表面物质,被饲料植物的化学吸收,可以积累到一定程度的破坏,质量平衡和电荷平衡,并包含食草反刍动物(Reisenauer等人,可以给出热力学1973年的分子特征)。在圣华金河的一些重要地区放牧牛(possito, 1983)。在加州谷地,特别是豆科植物上,发现矿物上Mo吸附的化学模型-受到土壤Mo含量升高的不利影响,溶液界面已成功地使用常量主要在碱性土壤上(Barshad, 1948)。另一个电容模型(Motta and Miranda, 1989;Goldberg hand,俄勒冈州西北部生产牧场的土壤(等人,1996年,1998年)和三层模型(Goldberg高Mo含量是酸,pH值在4.4范围内等人,1998年)的氧化物,粘土矿物和土壤。在这些5.3(久保田等人,1967)。豆科植物是钼的有效研究对象,钼吸附被描述为形成单积累体,特别是在高土壤pH值时,而大多数齿状表面络合物。在三层模型中,禾草和粮食作物不积累Mo到毒性研究中,Mo在Fe和Al氧化物、高岭石上的吸附水平(O’connor等,2001)。钼发挥其伊利石作用,两种土壤通过诱导铜失球吸附机制对放牧牛产生内毒效应。钼在蒙脱土上的吸附效果尤其明显,脱硫效果最好。高钼的不良影响可以通过外球吸附机制来减轻(动物的Goldby铜补充)(O 'Connor et berg et al., 1998)。钼在钛铝上的吸附,2001)。用CD-MUSIC模型对土壤溶液中氧化钼的浓度和吸附特性进行了详细的定量描述,需要在土壤矿物表面进行单齿状和双齿状的混合表面反应。(Bourikas et al., 2001)。虽然从化学上讲,土壤溶液pH、土壤质地、土壤溶液种类等因素对交换水分、温度、氧化物含量、有机质复合物的主导作用是合理的,但含量与粘土矿物学之间并不一定存在1:1的对应关系(Reisenauer et al., 1973)。溶液和表面物质(possito, 1983)。随着溶液中钼种类的增加,钼的主要吸附面在大部分溶液pH值上为moo24。在pH范围内,钼的主要吸附面为:pKa1 4.00, pKa2 4.24 (Lindsay, 1979)。 注意到Mo在碳酸钙上的吸附较低,对他们的数据进行再分析表明,在恒定电容模型上的吸附是一种化学表面络合模型,该模型在pH值为7.1的CaCO3与模型的量级相当,适用于27个土壤系列中36个样品的Mo吸附。建立了pH 7.0时伊利石的一般回归吸附和pH 7.0时蒙脱土吸附的三倍大模型,并从pH 6.8时四个独立测量的土壤化学特征结晶高岭石的井常数中预测土壤Mo表面络合。tics:阳离子交换容量,有机碳含量,无机碳钼在土壤上的吸附,土壤矿物质碳含量,氧化铁含量。恒电容模型已被各种建模方法所描述。能够很好地预测钼在所有36个土壤样品上的吸附。这些模型包括经验Freundlich,将这些回归预测方程转化为化学模型,以及Temkin吸附等温线(Reisenauer et - transport模型将允许模拟土壤溶液Mo)。, 1962;按照推动,1971;Karimian and Cox, 1978;不同环境和农业管理下的Phelan集中度和Mattigod, 1984;Xie and MacKenzie, 1991;金条件下不需要土壤特定吸附数据和subseberg和Forster, 1998)和表面络合模态参数优化。els:恒电容模型(Motta and Miranda, 1989;Goldberg et al., 1996,1998),三层模型(Goldberg et al., 1998;Wu et al., 2001), Stern变量M既是表面电荷-可变表面电位模型(Mcplant生长和潜在毒性痕量eleKenzie, 1983)和CD-MUSIC模型(Bourikas et al., ment)所必需的微量营养素,特别是对于放牧动物。钼defi2001)。经验模型的参数只有在世界各地进行实验的条件下才有效(Murphy和Walsh, 1972)。Moducted。表面络合模型是以阴离子形式存在的化学钼,它很容易被吸收,利用确定的表面物质,被饲料植物的化学吸收,可以积累到一定程度的破坏,质量平衡和电荷平衡,并包含食草反刍动物(Reisenauer等人,可以给出热力学1973年的分子特征)。在圣华金河的一些重要地区放牧牛(possito, 1983)。在加州谷地,特别是豆科植物上,发现矿物上Mo吸附的化学模型-受到土壤Mo含量升高的不利影响,溶液界面已成功地使用常量主要在碱性土壤上(Barshad, 1948)。另一个电容模型(Motta and Miranda, 1989;Goldberg hand,俄勒冈州西北部生产牧场的土壤(等人,1996年,1998年)和三层模型(Goldberg高Mo含量是酸,pH值在4.4范围内等人,1998年)的氧化物,粘土矿物和土壤。在这些5.3(久保田等人,1967)。豆科植物是钼的有效研究对象,钼吸附被描述为形成单积累体,特别是在高土壤pH值时,而大多数齿状表面络合物。在三层模型中,禾草和粮食作物不积累Mo到毒性研究中,Mo在Fe和Al氧化物、高岭石上的吸附水平(O’connor等,2001)。钼发挥其伊利石作用,两种土壤通过诱导铜失球吸附机制对放牧牛产生内毒效应。钼在蒙脱土上的吸附效果尤其明显,脱硫效果最好。高钼的不良影响可以通过外球吸附机制来减轻(动物的Goldby铜补充)(O 'Connor et berg et al., 1998)。钼在钛铝上的吸附,2001)。用CD-MUSIC模型对土壤溶液中氧化钼的浓度和吸附特性进行了详细的定量描述,需要在土壤矿物表面进行单齿状和双齿状的混合表面反应。(Bourikas et al., 2001)。虽然从化学上讲,土壤溶液pH、土壤质地、土壤溶液种类等因素对交换水分、温度、氧化物含量、有机质复合物的主导作用是合理的,但含量与粘土矿物学之间并不一定存在1:1的对应关系(Reisenauer et al., 1973)。溶液和表面物质(possito, 1983)。随着溶液中钼种类的增加,钼的主要吸附面在大部分溶液pH值上为moo24。在pH范围内,钼的主要吸附面为:pKa1 4.00, pKa2 4.24 (Lindsay, 1979)。 土壤中含有氧化物、粘土矿物和有机物(goldatautenated全反射傅立叶变换infraberg等,1996)。虽然Goldberg等人(1996)的红外和漫反射红外傅立叶变换光谱为压力提供了直接证据,但George E. Brown Jr.盐度实验室。, 450w。大泉路,河滨市,加州92507。来自George E. Brown关于单齿和双齿Mo表面的论文,盐度实验室。2001年10月29日收到。*非晶态Fe表面吸附的配合物(sgoldberg@ussl.ars.usda.gov)。氢氧化物(Goldberg et al., 1998)。然而,这些研究对于典型的土壤条件并不是决定性的,因为发表在《土壤科学》上。Soc。点。[j] . 66:1836-1842(2002)。 土壤中含有氧化物、粘土矿物和有机物(goldatautenated全反射傅立叶变换infraberg等,1996)。虽然Goldberg等人(1996)的红外和漫反射红外傅立叶变换光谱为压力提供了直接证据,但George E. Brown Jr.盐度实验室。, 450w。大泉路,河滨市,加州92507。来自George E. Brown关于单齿和双齿Mo表面的论文,盐度实验室。2001年10月29日收到。*非晶态Fe表面吸附的配合物(sgoldberg@ussl.ars.usda.gov)。氢氧化物(Goldberg et al., 1998)。然而,这些研究对于典型的土壤条件并不是决定性的,因为发表在《土壤科学》上。Soc。点。[j] . 66:1836-1842(2002)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil Science Society of America Journal
Soil Science Society of America Journal 农林科学-土壤科学
CiteScore
5.40
自引率
3.40%
发文量
130
审稿时长
3.6 months
期刊介绍: SSSA Journal publishes content on soil physics; hydrology; soil chemistry; soil biology; soil biochemistry; soil fertility; plant nutrition; pedology; soil and water conservation and management; forest, range, and wildland soils; soil and plant analysis; soil mineralogy, wetland soils. The audience is researchers, students, soil scientists, hydrologists, pedologist, geologists, agronomists, arborists, ecologists, engineers, certified practitioners, soil microbiologists, and environmentalists. The journal publishes original research, issue papers, reviews, notes, comments and letters to the editor, and book reviews. Invitational papers may be published in the journal if accepted by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信