Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction

IF 3.784 3区 化学 Q1 Chemistry
Saihang Zhang , Senchuan Huang , Fengzhan Sun , Yinghui Li , Li Ren , Hao Xu , Zhao Li , Yifei Liu , Wei Li , Lina Chong , Jianxin Zou
{"title":"Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction","authors":"Saihang Zhang ,&nbsp;Senchuan Huang ,&nbsp;Fengzhan Sun ,&nbsp;Yinghui Li ,&nbsp;Li Ren ,&nbsp;Hao Xu ,&nbsp;Zhao Li ,&nbsp;Yifei Liu ,&nbsp;Wei Li ,&nbsp;Lina Chong ,&nbsp;Jianxin Zou","doi":"10.1016/j.jechem.2023.09.013","DOIUrl":null,"url":null,"abstract":"<div><p>High efficiency, cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems. The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies. Herein, we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction (OER) for alkaline electrolysis, which yields current density of 10 mA cm<sup>−2</sup> at an overpotential of 215 mV in 0.1 M KOH electrolyte. The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity. Raman spectra revealed that the catalyst underwent structure reconstruction during OER, evolving into oxyhydroxide, which was the active site proceeding OER in alkaline electrolyte. In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst. This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability. These findings provide promising strategies for the rational design of non-noble metal OER catalysts.</p></div>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005272","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

High efficiency, cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems. The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies. Herein, we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction (OER) for alkaline electrolysis, which yields current density of 10 mA cm−2 at an overpotential of 215 mV in 0.1 M KOH electrolyte. The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity. Raman spectra revealed that the catalyst underwent structure reconstruction during OER, evolving into oxyhydroxide, which was the active site proceeding OER in alkaline electrolyte. In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst. This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability. These findings provide promising strategies for the rational design of non-noble metal OER catalysts.

Abstract Image

镍-铁双金属醇盐激发晶格氧进行高效电化学析氧反应
高效、经济高效和耐用的电催化剂在能量转换和存储系统中至关重要。将水电氧化为氧气在这种能量转换技术中起着至关重要的作用。在此,我们报道了一种合成双金属醇盐的稳健方法,用于碱性电解的有效析氧反应(OER),该方法在0.1 M KOH电解质中,在215 mV的过电位下产生10 mA cm−2的电流密度。该催化剂在540小时以上的操作中表现出优异的耐久性,活性降解可忽略不计。拉曼光谱表明,催化剂在OER过程中进行了结构重建,演变为氢氧根,氢氧根是碱性电解质中进行OER的活性位点。原位同步加速器X射线吸收实验结合密度泛函理论计算,提出了原位生成的镍-铁双金属氢氧化物催化剂的晶格氧参与电催化反应机理。这种机制以及镍和铁之间的协同作用是提高催化活性和耐久性的原因。这些发现为非贵金属OER催化剂的合理设计提供了有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信