Tuning electronic structure of RuO2 by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium

IF 3.784 3区 化学 Q1 Chemistry
Qing Qin , Tiantian Wang , Zijian Li , Guolin Zhang , Haeseong Jang , Liqiang Hou , Yu Wang , Min Gyu Kim , Shangguo Liu , Xien Liu
{"title":"Tuning electronic structure of RuO2 by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium","authors":"Qing Qin ,&nbsp;Tiantian Wang ,&nbsp;Zijian Li ,&nbsp;Guolin Zhang ,&nbsp;Haeseong Jang ,&nbsp;Liqiang Hou ,&nbsp;Yu Wang ,&nbsp;Min Gyu Kim ,&nbsp;Shangguo Liu ,&nbsp;Xien Liu","doi":"10.1016/j.jechem.2023.09.010","DOIUrl":null,"url":null,"abstract":"<div><p>The poor stability of RuO<sub>2</sub> electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers. To dramatically enhance the durability of RuO<sub>2</sub> to construct activity-stability trade-off model is full of significance but challenging. Herein, a single atom Zn stabilized RuO<sub>2</sub> with enriched oxygen vacancies (SA Zn-RuO<sub>2</sub>) is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction (OER). Compared with commercial RuO<sub>2</sub>, the enhanced Ru–O bond strength of SA Zn-RuO<sub>2</sub> by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru, while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation. Simultaneously, the optimized surrounding electronic structure of Ru sites in SA Zn-RuO<sub>2</sub> decreases the adsorption energies of OER intermediates to reduce the reaction barrier. As a result, the representative SA Zn-RuO<sub>2</sub> exhibits a low overpotential of 210 mV to achieve 10 mA cm<sup>−2</sup> and a greatly enhanced durability than commercial RuO<sub>2</sub>. This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.</p></div>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005247","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

The poor stability of RuO2 electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers. To dramatically enhance the durability of RuO2 to construct activity-stability trade-off model is full of significance but challenging. Herein, a single atom Zn stabilized RuO2 with enriched oxygen vacancies (SA Zn-RuO2) is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction (OER). Compared with commercial RuO2, the enhanced Ru–O bond strength of SA Zn-RuO2 by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru, while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation. Simultaneously, the optimized surrounding electronic structure of Ru sites in SA Zn-RuO2 decreases the adsorption energies of OER intermediates to reduce the reaction barrier. As a result, the representative SA Zn-RuO2 exhibits a low overpotential of 210 mV to achieve 10 mA cm−2 and a greatly enhanced durability than commercial RuO2. This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.

Abstract Image

利用单原子Zn和氧空位调节RuO2的电子结构以促进酸性介质中的析氧反应
RuO2电催化剂稳定性差是其在聚合物电解质膜电解槽中实际应用的主要障碍。为了显著提高RuO2的耐久性,构建活性-稳定性权衡模型意义重大,但具有挑战性。本文开发了一种具有富集氧空位的单原子Zn稳定的RuO2(SA Zn-RuO2),作为酸性析氧反应(OER)中氧化铱的一种有前途的替代品。与商业RuO2相比,SA Zn-RuO2通过形成Zn-O-Ru局部结构基序而增强的Ru–O键强度有利于稳定表面Ru,而从Zn单原子转移到相邻Ru原子的电子保护Ru活性位点免受过氧化。同时,SA Zn-RuO2中Ru位点的优化周围电子结构降低了OER中间体的吸附能,从而降低了反应势垒。因此,代表性的SA Zn-RuO2表现出210 mV的低过电位,以实现10 mA cm−2,并且比商业RuO2的耐用性大大增强。这项工作通过耦合单原子掺杂和空位,在高活性和对酸性OER的催化稳定性之间进行权衡,提供了一种很有前途的双工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信