Pimsuporn Poyoi, Ariadna Gassiout-Melian, L. Coromina
{"title":"Local food experiences before and after COVID-19: a sentiment analysis of EWOM","authors":"Pimsuporn Poyoi, Ariadna Gassiout-Melian, L. Coromina","doi":"10.20867/thm.29.4.1","DOIUrl":null,"url":null,"abstract":"Purpose – To use Natural Language Processing (NLP) to explore how people feel and what they share online about their experiences with food. In addition, to learn how these experiences have evolved recently, differences before and during the crisis COVID -19 will be explored. Methodology/Design/Approach – A total of 35,001 reviews of restaurants and local cuisine establishments near tourist attractions in the city of Ayutthaya, Thailand, were extracted from the Google Local Guide platform. Several NLP techniques were used to analyse the text data, including sentiment analysis, word cloud analysis, and the N-gramme model. Findings – The results reveal travellers’ hidden sentiments toward dining experiences. Key attributes of experience sharing related to food activities in online reviews were identified both before and after COVID -19. From a theoretical perspective, the findings are relevant for researchers to recognise tourists’ behaviour in sharing local food experiences. From a practical perspective, decision makers will have a better understanding of tourist behaviour to develop and implement appropriate strategies. Originality of the research – This study is the first to analyse and interpret online reviews on Google Maps platform by applying text mining and sentiment analysis in gastronomic tourism research, especially in the context of COVID -19.","PeriodicalId":45185,"journal":{"name":"Tourism and Hospitality Management-Croatia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tourism and Hospitality Management-Croatia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20867/thm.29.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose – To use Natural Language Processing (NLP) to explore how people feel and what they share online about their experiences with food. In addition, to learn how these experiences have evolved recently, differences before and during the crisis COVID -19 will be explored. Methodology/Design/Approach – A total of 35,001 reviews of restaurants and local cuisine establishments near tourist attractions in the city of Ayutthaya, Thailand, were extracted from the Google Local Guide platform. Several NLP techniques were used to analyse the text data, including sentiment analysis, word cloud analysis, and the N-gramme model. Findings – The results reveal travellers’ hidden sentiments toward dining experiences. Key attributes of experience sharing related to food activities in online reviews were identified both before and after COVID -19. From a theoretical perspective, the findings are relevant for researchers to recognise tourists’ behaviour in sharing local food experiences. From a practical perspective, decision makers will have a better understanding of tourist behaviour to develop and implement appropriate strategies. Originality of the research – This study is the first to analyse and interpret online reviews on Google Maps platform by applying text mining and sentiment analysis in gastronomic tourism research, especially in the context of COVID -19.
期刊介绍:
Tourism and Hospitality Management is an international, multidisciplinary, open access journal, aiming to promote and enhance research in all fields of the tourism and hospitality industry. It publishes double-blind reviewed papers and encourages an interchange between tourism and hospitality researchers, educators and managers. Editors of Tourism and Hospitality Management strongly promote research integrity and aim to prevent any type of scientific misconduct, such as: fabrication, falsification, plagiarism, redundant publication and authorship problems. All submitted manuscripts are checked using Crossref Similarity Check (iThenticate). Nurturing a scientifically based approach to research, the journal publishes original papers along with empirical research and theoretical articles that contribute to the conceptual development of tourism and hospitality management. Editors look particularly for articles about new trends, challenges and developments, as well as the application of new ideas that are likely to affect the tourism and hospitality industry. The general criteria for the acceptance of articles are: contribution to the scientific knowledge in the field of tourism and hospitality management, scientifically reliable research methodology, relevant literature review and quality of the English language.