{"title":"Use of Feature Ranking Techniques for Defect Severity Estimation of Rolling Element Bearings","authors":"Aditya Sharma, A. Amarnath, P. K. Kankar","doi":"10.20855/IJAV.2018.23.11104","DOIUrl":null,"url":null,"abstract":"Bearings are the most common components used in rotating machines. Their malfunction may result in costly shutdowns and human causalities which can be avoided by effective condition monitoring practices. In present study, attempt has been made to estimate the severity of defect in bearing components by a two-step process. Initially, defects of various severities in all bearing components are classified. In the next step, if defect exist in any of the bearing components, i.e. inner race, outer race, and rolling elements, level of severity of defect is estimated. Various statistical features are extracted from the raw vibration signals. Two machine learning techniques; support vector machine and artificial neural network, along with four feature ranking techniques; Chi-square, gain ratio, ReliefF and principal component analysis are used and employed for the analysis. Results show the potential of the proposed methodology in defect severity estimation and classification of rolling element bearings.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"23 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/IJAV.2018.23.11104","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 12
Abstract
Bearings are the most common components used in rotating machines. Their malfunction may result in costly shutdowns and human causalities which can be avoided by effective condition monitoring practices. In present study, attempt has been made to estimate the severity of defect in bearing components by a two-step process. Initially, defects of various severities in all bearing components are classified. In the next step, if defect exist in any of the bearing components, i.e. inner race, outer race, and rolling elements, level of severity of defect is estimated. Various statistical features are extracted from the raw vibration signals. Two machine learning techniques; support vector machine and artificial neural network, along with four feature ranking techniques; Chi-square, gain ratio, ReliefF and principal component analysis are used and employed for the analysis. Results show the potential of the proposed methodology in defect severity estimation and classification of rolling element bearings.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.