{"title":"Model Development and Validation of a Dual-Axis PV Tracking System: A Case of South Africa","authors":"P. A. Hohne, K. Kusakana, B. Numbi","doi":"10.18178/ijeetc.10.4.288-293","DOIUrl":null,"url":null,"abstract":"Dual axis photovoltaic (PV) tracking system is considered in general to be a poor investment. This is mainly due to the substantial initial investment costs that these systems carry. However, in recent years, solar panels and accompanying component costs have decreased significantly. Additionally, electricity price hikes in South Africa have compelled most of the country’s citizens to reconsider their sources of electrical energy. A popular alternative to grid energy in South Africa is the use of photovoltaic systems. Careful consideration is required when choosing from the various systems available on the market. The main method for maximizing the output power of these systems is to introduce solar tracking systems. Therefore, in this paper, a model of a dual axis tracking system is developed and validated against a real-world plant in the Bloemfontein region in South Africa. The presented model was observed to be accurate to within an error rate of 6.39%. Additionally, the performance of the inverters of the PV tracking systems were evaluated and discussed. The validated model may prove to be an excellent tool for energy managers to determine the feasibility of such systems, compared to conventional photovoltaic setups.","PeriodicalId":37533,"journal":{"name":"International Journal of Electrical and Electronic Engineering and Telecommunications","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Electronic Engineering and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijeetc.10.4.288-293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Dual axis photovoltaic (PV) tracking system is considered in general to be a poor investment. This is mainly due to the substantial initial investment costs that these systems carry. However, in recent years, solar panels and accompanying component costs have decreased significantly. Additionally, electricity price hikes in South Africa have compelled most of the country’s citizens to reconsider their sources of electrical energy. A popular alternative to grid energy in South Africa is the use of photovoltaic systems. Careful consideration is required when choosing from the various systems available on the market. The main method for maximizing the output power of these systems is to introduce solar tracking systems. Therefore, in this paper, a model of a dual axis tracking system is developed and validated against a real-world plant in the Bloemfontein region in South Africa. The presented model was observed to be accurate to within an error rate of 6.39%. Additionally, the performance of the inverters of the PV tracking systems were evaluated and discussed. The validated model may prove to be an excellent tool for energy managers to determine the feasibility of such systems, compared to conventional photovoltaic setups.
期刊介绍:
International Journal of Electrical and Electronic Engineering & Telecommunications. IJEETC is a scholarly peer-reviewed international scientific journal published quarterly, focusing on theories, systems, methods, algorithms and applications in electrical and electronic engineering & telecommunications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on Electrical and Electronic Engineering & Telecommunications. All papers will be blind reviewed and accepted papers will be published quarterly, which is available online (open access) and in printed version.