{"title":"Metabolism and cancer-select topics","authors":"F. Lonardo, Casem Ballouk","doi":"10.20517/mtod.2022.05","DOIUrl":null,"url":null,"abstract":"Metabolism and cancer intersect in multiple ways. Cancer has unique metabolic properties, including an inordinate reliance on anaerobic glycolysis (the Warburg effect). From an evolutionary standpoint, increased cancer incidence is associated with increased metabolic rates across species. Epidemiological data prove that a group of overlapping metabolic alterations, including obesity, type II Diabetes Mellitus, non-alcoholic fatty liver disease, and metabolic syndrome, constitute predisposing risk factors for cancer development in multiple anatomical sites. The molecular pathways underpinning this association involve hyperinsulinemia, hyperglycemia, sex hormones, adipokines, chronic inflammation, oxidative stress, and altered immune response.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism and target organ damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/mtod.2022.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Metabolism and cancer intersect in multiple ways. Cancer has unique metabolic properties, including an inordinate reliance on anaerobic glycolysis (the Warburg effect). From an evolutionary standpoint, increased cancer incidence is associated with increased metabolic rates across species. Epidemiological data prove that a group of overlapping metabolic alterations, including obesity, type II Diabetes Mellitus, non-alcoholic fatty liver disease, and metabolic syndrome, constitute predisposing risk factors for cancer development in multiple anatomical sites. The molecular pathways underpinning this association involve hyperinsulinemia, hyperglycemia, sex hormones, adipokines, chronic inflammation, oxidative stress, and altered immune response.