{"title":"The DNA damage response - from cell biology to human disease","authors":"F. Lam","doi":"10.20517/jtgg.2021.61","DOIUrl":null,"url":null,"abstract":"Maintenance of DNA integrity is crucial for faithful transmission of the genetic code from generation to generation. Our genetic code is constantly under attack from both endogenous and exogenous sources of DNA damage. To ensure genome stability, cells have developed elegant DNA damage repair mechanisms. Defects in DNA damage repair have been linked to several human diseases including promoting oncogenesis, heritable neurodegenerative and neuromuscular diseases caused by unstable DNA repeats, neuropathies and myopathies caused by mutations and rearrangements in mitochondrial DNA, neuropsychiatric disorders, and heritable premature aging syndromes. This review will discuss our current understanding of how these underlying errors in DNA repair contribute to the clinical outcomes of patients who present with these diseases.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational genetics and genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jtgg.2021.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Maintenance of DNA integrity is crucial for faithful transmission of the genetic code from generation to generation. Our genetic code is constantly under attack from both endogenous and exogenous sources of DNA damage. To ensure genome stability, cells have developed elegant DNA damage repair mechanisms. Defects in DNA damage repair have been linked to several human diseases including promoting oncogenesis, heritable neurodegenerative and neuromuscular diseases caused by unstable DNA repeats, neuropathies and myopathies caused by mutations and rearrangements in mitochondrial DNA, neuropsychiatric disorders, and heritable premature aging syndromes. This review will discuss our current understanding of how these underlying errors in DNA repair contribute to the clinical outcomes of patients who present with these diseases.