Backstepping-based state estimation for a class of stochastic nonlinear systems

Xin Yin, Qichun Zhang
{"title":"Backstepping-based state estimation for a class of stochastic nonlinear systems","authors":"Xin Yin, Qichun Zhang","doi":"10.20517/ces.2021.13","DOIUrl":null,"url":null,"abstract":"The state estimation problem is investigated for a class of continuous-time stochastic nonlinear systems, where a novel filter design method is proposed based on backstepping design and stochastic differential equation. In particular, the structure of the filter is developed following the nonlinear system model, and then the estimation error dynamics can be described by a stochastic differential equation. Motivated by backstepping procedure, the nonlinear dynamics can be converted to an Ornstein–Uhlenbeck process via the control loop design. Thus, the estimation can be achieved once the estimation error is bounded and the variance of the error can be optimized. Since the ideal estimation error is a Brownian motion, the filter parameters can be selected following the Lyapunov stability theory and variance assignment method. Following the same framework, the multivariate stochastic systems can be handled with the block backstepping design. To validate the presented design approach, a numerical example is given as the simulation results to demonstrate the state estimation performance.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2021.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The state estimation problem is investigated for a class of continuous-time stochastic nonlinear systems, where a novel filter design method is proposed based on backstepping design and stochastic differential equation. In particular, the structure of the filter is developed following the nonlinear system model, and then the estimation error dynamics can be described by a stochastic differential equation. Motivated by backstepping procedure, the nonlinear dynamics can be converted to an Ornstein–Uhlenbeck process via the control loop design. Thus, the estimation can be achieved once the estimation error is bounded and the variance of the error can be optimized. Since the ideal estimation error is a Brownian motion, the filter parameters can be selected following the Lyapunov stability theory and variance assignment method. Following the same framework, the multivariate stochastic systems can be handled with the block backstepping design. To validate the presented design approach, a numerical example is given as the simulation results to demonstrate the state estimation performance.
一类随机非线性系统的状态估计
研究了一类连续时间随机非线性系统的状态估计问题,提出了一种基于反步设计和随机微分方程的滤波器设计方法。特别地,根据非线性系统模型发展了滤波器的结构,然后用随机微分方程来描述估计误差的动态。在反步过程的激励下,通过控制回路设计将非线性动力学转化为Ornstein-Uhlenbeck过程。因此,一旦估计误差有界,就可以实现估计,并且可以优化误差的方差。由于理想估计误差是布朗运动,滤波器参数的选择可以遵循李雅普诺夫稳定性理论和方差分配方法。在相同的框架下,多元随机系统可以用块退步设计来处理。为了验证所提出的设计方法,给出了一个数值算例作为仿真结果来验证状态估计的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信