C. Geady, D. Shultz, A. Razak, S. Schuetze, Benjamin Haibe-Kains
{"title":"Radiomics in sarcoma trials: a complement to RECIST for patient assessment","authors":"C. Geady, D. Shultz, A. Razak, S. Schuetze, Benjamin Haibe-Kains","doi":"10.20517/2394-4722.2022.57","DOIUrl":null,"url":null,"abstract":"Radiological imaging has a critical role in the diagnosis of sarcomas and in evaluating therapy response assessment. The current gold standard for response assessment in solid tumors is the Response Evaluation Criteria in Solid Tumors, which evaluates changes in tumor size as a surrogate endpoint for therapeutic efficacy. However, tumors may undergo necrosis, changes in vascularization or become cystic in response to therapy, with no significant volume changes; thus, size assessments alone may not be adequate. Such morphological changes may give rise to radiographic phenotypes that are not easily detected by human operators. Fortunately, recent advances in high-performance computing and machine learning algorithms have enabled deep analysis of radiological images to extract features that can provide richer information about intensity, shape, size or volume, and texture of tumor phenotypes. There is growing evidence to suggest that these image-derived or “radiomic features” are sensitive to biological processes such as necrosis and glucose metabolism. Thus, radiomics could prove to be a critical tool for assessing treatment response and may present an integral complement to existing response criteria, opening new avenues for patient assessment in sarcoma trials.","PeriodicalId":15167,"journal":{"name":"Journal of Cancer Metastasis and Treatment","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Metastasis and Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/2394-4722.2022.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Radiological imaging has a critical role in the diagnosis of sarcomas and in evaluating therapy response assessment. The current gold standard for response assessment in solid tumors is the Response Evaluation Criteria in Solid Tumors, which evaluates changes in tumor size as a surrogate endpoint for therapeutic efficacy. However, tumors may undergo necrosis, changes in vascularization or become cystic in response to therapy, with no significant volume changes; thus, size assessments alone may not be adequate. Such morphological changes may give rise to radiographic phenotypes that are not easily detected by human operators. Fortunately, recent advances in high-performance computing and machine learning algorithms have enabled deep analysis of radiological images to extract features that can provide richer information about intensity, shape, size or volume, and texture of tumor phenotypes. There is growing evidence to suggest that these image-derived or “radiomic features” are sensitive to biological processes such as necrosis and glucose metabolism. Thus, radiomics could prove to be a critical tool for assessing treatment response and may present an integral complement to existing response criteria, opening new avenues for patient assessment in sarcoma trials.