Pedro Lladó, Thomas McKenzie, Nils Meyer-Kahlen, Sebastian J. Schlecht
{"title":"Predicting Perceptual Transparency of Head-Worn Devices","authors":"Pedro Lladó, Thomas McKenzie, Nils Meyer-Kahlen, Sebastian J. Schlecht","doi":"10.17743/jaes.2022.0024","DOIUrl":null,"url":null,"abstract":"Acoustically transparent head-worn devices are a key component of auditory augmented reality systems, in which both real and virtual sound sources are presented to a listener simultaneously. Head-worn devices can exhibit a high transparency simply through their physical design but in practice will always obstruct the sound field to some extent. In this study, a method for predicting the perceptual transparency of head-worn devices is presented using numerical analysis of device measurements, testing both coloration and localization in the horizontal and median plane. Firstly, listening experiments are conducted to assess perceived coloration and localization impairments. Secondly, head-related transfer functions of a dummy head wearing the head-worn devices are measured, and auditory models are used to numerically quantify the introduced perceptual effects. The results show that the tested auditory models are capable of predicting perceptual transparency and are therefore robust in applications that they were not initially designed for.","PeriodicalId":50008,"journal":{"name":"Journal of the Audio Engineering Society","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Audio Engineering Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 5
Abstract
Acoustically transparent head-worn devices are a key component of auditory augmented reality systems, in which both real and virtual sound sources are presented to a listener simultaneously. Head-worn devices can exhibit a high transparency simply through their physical design but in practice will always obstruct the sound field to some extent. In this study, a method for predicting the perceptual transparency of head-worn devices is presented using numerical analysis of device measurements, testing both coloration and localization in the horizontal and median plane. Firstly, listening experiments are conducted to assess perceived coloration and localization impairments. Secondly, head-related transfer functions of a dummy head wearing the head-worn devices are measured, and auditory models are used to numerically quantify the introduced perceptual effects. The results show that the tested auditory models are capable of predicting perceptual transparency and are therefore robust in applications that they were not initially designed for.
期刊介绍:
The Journal of the Audio Engineering Society — the official publication of the AES — is the only peer-reviewed journal devoted exclusively to audio technology. Published 10 times each year, it is available to all AES members and subscribers.
The Journal contains state-of-the-art technical papers and engineering reports; feature articles covering timely topics; pre and post reports of AES conventions and other society activities; news from AES sections around the world; Standards and Education Committee work; membership news, patents, new products, and newsworthy developments in the field of audio.