Corneal Cross-linking in Thin Corneas: From Origins to State of the Art

F. Hafezi, M. Hillen, L. Kollros, Nikki L. Hafezi, E. A. Torres-Netto
{"title":"Corneal Cross-linking in Thin Corneas: From Origins to State of the Art","authors":"F. Hafezi, M. Hillen, L. Kollros, Nikki L. Hafezi, E. A. Torres-Netto","doi":"10.17925/usor.2022.16.1.13","DOIUrl":null,"url":null,"abstract":"Corneal cross-linking (CXL) can halt ectasia progression and involves saturating the stroma with riboflavin, followed by ultraviolet-A (UV-A) light irradiation. This generates reactive oxygen species that covalently cross-link together stromal molecules, strengthening the cornea. The ‘Dresden protocol’ left a 70 µm uncross-linked region at the base of the stroma to protect the corneal endothelium from UV damage; however, this limited CXL to corneas ≥400 µm. Approaches made to overcome this limitation involved artificial corneal thickening to ≥400 μm through swelling the stroma with hypo-osmolaric riboflavin, applying riboflavin-soaked contact lenses during UV irradiation or leaving ‘epithelial islands’ over the thinnest corneal regions. The drawbacks to these three approaches are unpredictable swelling, suboptimal stiffening and unpredictable cross-linking effects, respectively. Newer approaches adapt the irradiation protocol to the cornea to deliver CXL that maintains the 70 μm uncross-linked stroma safety margin. The sub400 protocol employs an algorithm that models the interactions between UV-A energy, riboflavin, oxygen diffusion and stromal thickness. It requires only corneal pachymetry measurements at the thinnest point and the selection of the appropriate UV irradiation time from a look-up table to cross-link corneas as thin as 200 µm safely and effectively.","PeriodicalId":90077,"journal":{"name":"US ophthalmic review","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"US ophthalmic review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17925/usor.2022.16.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Corneal cross-linking (CXL) can halt ectasia progression and involves saturating the stroma with riboflavin, followed by ultraviolet-A (UV-A) light irradiation. This generates reactive oxygen species that covalently cross-link together stromal molecules, strengthening the cornea. The ‘Dresden protocol’ left a 70 µm uncross-linked region at the base of the stroma to protect the corneal endothelium from UV damage; however, this limited CXL to corneas ≥400 µm. Approaches made to overcome this limitation involved artificial corneal thickening to ≥400 μm through swelling the stroma with hypo-osmolaric riboflavin, applying riboflavin-soaked contact lenses during UV irradiation or leaving ‘epithelial islands’ over the thinnest corneal regions. The drawbacks to these three approaches are unpredictable swelling, suboptimal stiffening and unpredictable cross-linking effects, respectively. Newer approaches adapt the irradiation protocol to the cornea to deliver CXL that maintains the 70 μm uncross-linked stroma safety margin. The sub400 protocol employs an algorithm that models the interactions between UV-A energy, riboflavin, oxygen diffusion and stromal thickness. It requires only corneal pachymetry measurements at the thinnest point and the selection of the appropriate UV irradiation time from a look-up table to cross-link corneas as thin as 200 µm safely and effectively.
薄角膜交联:从起源到最新进展
角膜交联(CXL)可以阻止扩张进展,并涉及核黄素饱和基质,然后紫外线照射(UV-A)。这就产生了活性氧,它们以共价交联的方式将基质分子连接在一起,从而增强了角膜。“德累斯顿方案”在基质底部留下一个70µm的非交联区域,以保护角膜内皮免受紫外线损伤;然而,这将CXL限制在≥400µm的角膜。克服这一限制的方法包括人工角膜增厚至≥400 μm,通过用低渗透性核黄素肿胀基质,在紫外线照射期间使用核黄素浸泡的隐形眼镜,或在最薄的角膜区域留下“上皮岛”。这三种方法的缺点分别是不可预测的膨胀、次优的硬化和不可预测的交联效果。更新的方法将照射方案应用于角膜,以提供维持70 μm非交联基质安全范围的CXL。sub400方案采用一种算法,模拟UV-A能量、核黄素、氧扩散和基质厚度之间的相互作用。它只需要在最薄点进行角膜厚度测量,并从查找表中选择合适的紫外线照射时间,就可以安全有效地交联薄至200µm的角膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信