Two accelerated isogeometric boundary element method formulations: fast multipole method and hierarchical matrices method

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Emerson Bastos, É. L. Albuquerque, L. Campos, L. Wrobel
{"title":"Two accelerated isogeometric boundary element method formulations: fast multipole method and hierarchical matrices method","authors":"Emerson Bastos, É. L. Albuquerque, L. Campos, L. Wrobel","doi":"10.1590/1679-78257244","DOIUrl":null,"url":null,"abstract":"This work presents two fast isogeometric formulations of the Boundary Element Method (BEM) applied to heat conduction problems, one accelerated by Fast Multipole Method (FMM) and other by Hierarchical Matrices. The Fast Multipole Method uses complex variables and expansion of fundamental solutions into Laurant series, while the Hierarchical Matrices are created by low rank CUR approximations from the k−Means clustering technique for geometric sampling. Both use Non-Uniform Rational B-Splines (NURBS) as shape functions. To reduce computational cost and facilitate implementation, NURBS are decomposed into Bézier curves, making the isogeometric formulation very similar to the conventional BEM. A description of the hierarchical structure of the data and the implemented algorithms are presented. Validation is performed by comparing the results of the proposed formulations with those of the conventional BEM formulation. The computational cost of both formulations is analyzed showing the advantages of the proposed formulations for large scale problems.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents two fast isogeometric formulations of the Boundary Element Method (BEM) applied to heat conduction problems, one accelerated by Fast Multipole Method (FMM) and other by Hierarchical Matrices. The Fast Multipole Method uses complex variables and expansion of fundamental solutions into Laurant series, while the Hierarchical Matrices are created by low rank CUR approximations from the k−Means clustering technique for geometric sampling. Both use Non-Uniform Rational B-Splines (NURBS) as shape functions. To reduce computational cost and facilitate implementation, NURBS are decomposed into Bézier curves, making the isogeometric formulation very similar to the conventional BEM. A description of the hierarchical structure of the data and the implemented algorithms are presented. Validation is performed by comparing the results of the proposed formulations with those of the conventional BEM formulation. The computational cost of both formulations is analyzed showing the advantages of the proposed formulations for large scale problems.
两种加速等几何边界元方法:快速多极法和层次矩阵法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信