A generalized finite element interface method for mesh reduction of composite materials simulations

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Gelson de Sousa Alves, F. Evangelista Junior, Guilherme Oliveira Ferraz de Paiva
{"title":"A generalized finite element interface method for mesh reduction of composite materials simulations","authors":"Gelson de Sousa Alves, F. Evangelista Junior, Guilherme Oliveira Ferraz de Paiva","doi":"10.1590/1679-78257273","DOIUrl":null,"url":null,"abstract":"This paper proposes interface and polynomial enrichments using the generalized finite element method (IGFEM) for the material interface in composite materials without matching the finite element mesh to the boundaries of different materials. Applications in structural members such as laminated beams and heterogeneous composites (matrix and inclusions) employing coarse and fine meshes are employed. The results were compared with conventional GFEM and analytical solutions. Verification and simulations proved the efficiency of the suggested framework for solving problems with discontinuous gradients resulting from a material interface. The proposed method allows flexibility in mesh generation for composite materials by letting the interface be embedded in an element without the need to match the mesh to the material interface. This improves the computational efficiency over conventional methods.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257273","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes interface and polynomial enrichments using the generalized finite element method (IGFEM) for the material interface in composite materials without matching the finite element mesh to the boundaries of different materials. Applications in structural members such as laminated beams and heterogeneous composites (matrix and inclusions) employing coarse and fine meshes are employed. The results were compared with conventional GFEM and analytical solutions. Verification and simulations proved the efficiency of the suggested framework for solving problems with discontinuous gradients resulting from a material interface. The proposed method allows flexibility in mesh generation for composite materials by letting the interface be embedded in an element without the need to match the mesh to the material interface. This improves the computational efficiency over conventional methods.
复合材料模拟网格缩减的广义有限元界面法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信