Stress-strain distribution and failure mechanisms in dual-phase steels investigated with microstructure-based modeling

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Labinot Topilla, S. Toros
{"title":"Stress-strain distribution and failure mechanisms in dual-phase steels investigated with microstructure-based modeling","authors":"Labinot Topilla, S. Toros","doi":"10.1590/1679-78257157","DOIUrl":null,"url":null,"abstract":"In this study, the microstructural-based finite element modeling of dual-phase steels was investigated to visualize the crack initiation and its propagation through the phases that exist in the material. The parameters of various failure models, including Gurson, Gurson-Johnson-Cook, and Johnson-Cook (JC), were calibrated for different microstructure levels of DP600, DP800, and DP1000 steels. The onset of cracking, nucleation, void growth, and coalescence was determined using the models. As a result of the optimization studies, there is not much difference between the flow curves of the materials and the tensile values calculated from the tensile tests for DP600 and DP800, while it is slightly higher for DP1000. However, considering the fracture, martensite phases were found to be the main determinant of this situation. Cracks that start in the martensite phases then propagate through the ferrite phase and eventually cause the material to break. According to the results of the simulations, the difference between the experiments and the simulation results of the Gurson is 3.33%, the Gurson-JC is 1.82%, and the JC model is 2.39%.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78257157","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the microstructural-based finite element modeling of dual-phase steels was investigated to visualize the crack initiation and its propagation through the phases that exist in the material. The parameters of various failure models, including Gurson, Gurson-Johnson-Cook, and Johnson-Cook (JC), were calibrated for different microstructure levels of DP600, DP800, and DP1000 steels. The onset of cracking, nucleation, void growth, and coalescence was determined using the models. As a result of the optimization studies, there is not much difference between the flow curves of the materials and the tensile values calculated from the tensile tests for DP600 and DP800, while it is slightly higher for DP1000. However, considering the fracture, martensite phases were found to be the main determinant of this situation. Cracks that start in the martensite phases then propagate through the ferrite phase and eventually cause the material to break. According to the results of the simulations, the difference between the experiments and the simulation results of the Gurson is 3.33%, the Gurson-JC is 1.82%, and the JC model is 2.39%.
基于微观组织的模拟研究了双相钢的应力应变分布和失效机制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
8.30%
发文量
37
审稿时长
>12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信