{"title":"Solving the four index fully fuzzy transportation problem","authors":"Manal Hedid, R. Zitouni","doi":"10.17535/crorr.2020.0016","DOIUrl":null,"url":null,"abstract":"In this paper, we will solve the four index fully fuzzy transportation problem (\\textit{FFTP$_{4}$}) with some adapted classical methods. All problem's data will be presented as fuzzy numbers. In order to defuzificate these data, we will use the ranking function procedure. Our method to solve the \\textit{FFTP$_{4}$} composed of two phases; in the first one, we will use an adaptation of well-known algorithms to find an initial feasible solution, which are the least cost, Russell's approximation and Vogel's approximation methods. In the second phase, we will test the optimality of the initial solution, if it is not optimal, we will improve it. A numerical analysis of the proposed methods is performed by solving different examples of different sizes; it is determined that they are stable, robust, and efficient. A proper comparative study between the adapted methods identifies the suitable method for solving \\textit{FFTP$_{4}$}.","PeriodicalId":44065,"journal":{"name":"Croatian Operational Research Review","volume":"11 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Operational Research Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17535/crorr.2020.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we will solve the four index fully fuzzy transportation problem (\textit{FFTP$_{4}$}) with some adapted classical methods. All problem's data will be presented as fuzzy numbers. In order to defuzificate these data, we will use the ranking function procedure. Our method to solve the \textit{FFTP$_{4}$} composed of two phases; in the first one, we will use an adaptation of well-known algorithms to find an initial feasible solution, which are the least cost, Russell's approximation and Vogel's approximation methods. In the second phase, we will test the optimality of the initial solution, if it is not optimal, we will improve it. A numerical analysis of the proposed methods is performed by solving different examples of different sizes; it is determined that they are stable, robust, and efficient. A proper comparative study between the adapted methods identifies the suitable method for solving \textit{FFTP$_{4}$}.
期刊介绍:
Croatian Operational Research Review (CRORR) is the journal which publishes original scientific papers from the area of operational research. The purpose is to publish papers from various aspects of operational research (OR) with the aim of presenting scientific ideas that will contribute both to theoretical development and practical application of OR. The scope of the journal covers the following subject areas: linear and non-linear programming, integer programing, combinatorial and discrete optimization, multi-objective programming, stohastic models and optimization, scheduling, macroeconomics, economic theory, game theory, statistics and econometrics, marketing and data analysis, information and decision support systems, banking, finance, insurance, environment, energy, health, neural networks and fuzzy systems, control theory, simulation, practical OR and applications. The audience includes both researchers and practitioners from the area of operations research, applied mathematics, statistics, econometrics, intelligent methods, simulation, and other areas included in the above list of topics. The journal has an international board of editors, consisting of more than 30 editors – university professors from Croatia, Slovenia, USA, Italy, Germany, Austria and other coutries.