{"title":"Higher-order non-linear analysis of steel structures.Part I : elastic second-order formulation","authors":"C. Iu, M. Bradford","doi":"10.18057/ijasc.2012.8.2.5","DOIUrl":null,"url":null,"abstract":"This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational structural frame software, analyses of large frames can still be problematic from a numerical standpoint, with efficacious and reliable convergence not always being ensured. To this end, the intent of this paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with a large number of members suitable for engineering practice. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived, in which the crucial member bowing effect involved in the equilibrium equation is captured, and implemented in an updated Lagrangian formulation. Because of this, it is able to predict flexural buckling, snap-through buckling and the large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The present approach with its efficacious and reliable convergence is shown in comparison studies to be applicable to selected applications which are prone to several forms of geometric non-linearity.","PeriodicalId":56332,"journal":{"name":"Advanced Steel Construction","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Steel Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18057/ijasc.2012.8.2.5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 17
Abstract
This paper presents a higher-order beam-column formulation that can capture the geometrically non-linear behaviour of steel framed structures which contain a multiplicity of slender members. Despite advances in computational structural frame software, analyses of large frames can still be problematic from a numerical standpoint, with efficacious and reliable convergence not always being ensured. To this end, the intent of this paper is to fulfil a need for versatile, reliable and efficient non-linear analysis of general steel framed structures with a large number of members suitable for engineering practice. Following a comprehensive review of numerical frame analysis techniques, a fourth-order element is derived, in which the crucial member bowing effect involved in the equilibrium equation is captured, and implemented in an updated Lagrangian formulation. Because of this, it is able to predict flexural buckling, snap-through buckling and the large displacement post-buckling behaviour of typical structures whose responses have been reported by independent researchers. The present approach with its efficacious and reliable convergence is shown in comparison studies to be applicable to selected applications which are prone to several forms of geometric non-linearity.
期刊介绍:
The International Journal of Advanced Steel Construction provides a platform for the publication and rapid dissemination of original and up-to-date research and technological developments in steel construction, design and analysis. Scope of research papers published in this journal includes but is not limited to theoretical and experimental research on elements, assemblages, systems, material, design philosophy and codification, standards, fabrication, projects of innovative nature and computer techniques. The journal is specifically tailored to channel the exchange of technological know-how between researchers and practitioners. Contributions from all aspects related to the recent developments of advanced steel construction are welcome.