{"title":"Modeling and analysis of lattice towers with more accurate models","authors":"W. Kang, F. Al-Bermani, S. Kitipornchai, H. Lam","doi":"10.18057/ijasc.2007.3.2.3","DOIUrl":null,"url":null,"abstract":"In traditional design, transmission towers are assumed to be trusses in the calculation of member axial forces, and secondary braces are usually neglected. However, this assumption does not accurately reflect the structural characteristics of transmission towers. This paper proposes a finite element model (FEM) in which member continuity, the asymmetrical sectional properties of members, the eccentricity of connections, and geometrical and material nonlinearities are considered. The proposed FEM is first verified using experimental results, and is then employed in the analysis of several lattice towers to investigate some of their practical aspects. Recommendations on the design of transmission tower systems are made according to the results of the analysis and given in the conclusion.","PeriodicalId":56332,"journal":{"name":"Advanced Steel Construction","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Steel Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18057/ijasc.2007.3.2.3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In traditional design, transmission towers are assumed to be trusses in the calculation of member axial forces, and secondary braces are usually neglected. However, this assumption does not accurately reflect the structural characteristics of transmission towers. This paper proposes a finite element model (FEM) in which member continuity, the asymmetrical sectional properties of members, the eccentricity of connections, and geometrical and material nonlinearities are considered. The proposed FEM is first verified using experimental results, and is then employed in the analysis of several lattice towers to investigate some of their practical aspects. Recommendations on the design of transmission tower systems are made according to the results of the analysis and given in the conclusion.
期刊介绍:
The International Journal of Advanced Steel Construction provides a platform for the publication and rapid dissemination of original and up-to-date research and technological developments in steel construction, design and analysis. Scope of research papers published in this journal includes but is not limited to theoretical and experimental research on elements, assemblages, systems, material, design philosophy and codification, standards, fabrication, projects of innovative nature and computer techniques. The journal is specifically tailored to channel the exchange of technological know-how between researchers and practitioners. Contributions from all aspects related to the recent developments of advanced steel construction are welcome.