High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations

IF 0.3 Q4 MATHEMATICS
Changpin Li, Rifang Wu, Heng-fei Ding
{"title":"High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations","authors":"Changpin Li, Rifang Wu, Heng-fei Ding","doi":"10.1685/JOURNAL.CAIM.536","DOIUrl":null,"url":null,"abstract":"In this paper, a high order approximation with convergence order \n$$O( {{\\tau ^{3 - \\alpha }}})$$ to Caputo derivative $$_{C}D_{0,t}^{\\alpha}f(t)$$ for \n$$\\alpha\\in(0,1)$$ is introduced. Furthermore, two high-order algorithms for Caputo type advection-diffusion equation are obtained. The stability and convergence are rigorously studied which depend upon the derivative order \\alpha. The corresponding convergence orders are $$O(\\tau^{3-\\alpha}+h^2)$$ and $$O(\\tau^{3-\\alpha}+h^4)$$ where \\tau is the time stepsize, h the space stepsize, respectively. Finally, numerical examples are given to support the theoretical analysis.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2015-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1685/JOURNAL.CAIM.536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 53

Abstract

In this paper, a high order approximation with convergence order $$O( {{\tau ^{3 - \alpha }}})$$ to Caputo derivative $$_{C}D_{0,t}^{\alpha}f(t)$$ for $$\alpha\in(0,1)$$ is introduced. Furthermore, two high-order algorithms for Caputo type advection-diffusion equation are obtained. The stability and convergence are rigorously studied which depend upon the derivative order \alpha. The corresponding convergence orders are $$O(\tau^{3-\alpha}+h^2)$$ and $$O(\tau^{3-\alpha}+h^4)$$ where \tau is the time stepsize, h the space stepsize, respectively. Finally, numerical examples are given to support the theoretical analysis.
卡普托导数和卡普托型平流扩散方程的高阶近似
本文介绍了$$\alpha\in(0,1)$$对Caputo导数$$_{C}D_{0,t}^{\alpha}f(t)$$收敛阶为$$O( {{\tau ^{3 - \alpha }}})$$的高阶逼近。进一步给出了求解Caputo型平流扩散方程的两种高阶算法。严格地研究了依赖于导数阶的稳定性和收敛性\alpha。对应的收敛阶为$$O(\tau^{3-\alpha}+h^2)$$和$$O(\tau^{3-\alpha}+h^4)$$,其中\tau为时间步长,h为空间步长。最后给出了数值算例来支持理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信