Fractional matching preclusion for butterfly derived networks

Q4 Mathematics
Xia Wang, Tianlong Ma, Chengfu Ye, Yuzhi Xiao, F. Wang
{"title":"Fractional matching preclusion for butterfly derived networks","authors":"Xia Wang, Tianlong Ma, Chengfu Ye, Yuzhi Xiao, F. Wang","doi":"10.20429/tag.2019.060103","DOIUrl":null,"url":null,"abstract":"The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu [17] recently introduced the concept of fractional matching preclusion number. The fractional matching preclusion number (FMP number) of G, denoted by fmp(G), is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The fractional strong matching preclusion number (FSMP number) of G, denoted by fsmp(G), is the minimum number of vertices and edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we study the fractional matching preclusion number and the fractional strong matching preclusion number for butterfly network, augmented butterfly network and enhanced butterfly network.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/tag.2019.060103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu [17] recently introduced the concept of fractional matching preclusion number. The fractional matching preclusion number (FMP number) of G, denoted by fmp(G), is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The fractional strong matching preclusion number (FSMP number) of G, denoted by fsmp(G), is the minimum number of vertices and edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we study the fractional matching preclusion number and the fractional strong matching preclusion number for butterfly network, augmented butterfly network and enhanced butterfly network.
蝴蝶衍生网络的分数匹配排除
图的匹配排除数是图的最小边数,删除这些边会导致图既不存在完美匹配,也不存在几乎完美匹配。作为推广,Liu和Liu[17]最近引入了分数匹配排除数的概念。G的分数阶匹配排除数(FMP number),记为FMP (G),是删除后的图中没有分数阶完美匹配的最小边数。G的分数阶强匹配排除数(FSMP number),记为FSMP (G),是图中删除后不进行分数阶完美匹配的顶点和边的最小个数。本文研究了蝴蝶网络、增强型蝴蝶网络和增强型蝴蝶网络的分数阶匹配排斥数和分数阶强匹配排斥数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信