Real-time Task Scheduling in Heterogeneous Multiprocessors System Using Hybrid Genetic Algorithm

Myungryun, Yoo
{"title":"Real-time Task Scheduling in Heterogeneous Multiprocessors System Using Hybrid Genetic Algorithm","authors":"Myungryun, Yoo","doi":"10.17265/1548-7709/2016.03.001","DOIUrl":null,"url":null,"abstract":"The real-time multiprocessor scheduling problem is one of the NP-hard problems. Furthermore, there are no papers which are concerned to heterogeneous multiprocessors system. This paper proposes a new real-time task scheduling algorithm using hGA (hybrid genetic algorithm) on heterogeneous multiprocessor environment. In solution algorithms, the GA (genetic algorithm) and the SA (simulated annealing) are cooperatively used. In this method, the convergence of GA is improved by introducing the probability of SA as the criterion for acceptance of new trial solution. The objective of proposed scheduling algorithm is to minimize total tardiness. The effectiveness of the proposed algorithm is shown through simulation studies. In simulation studies, the results of proposed algorithm show better than that of other algorithms.","PeriodicalId":69156,"journal":{"name":"通讯和计算机:中英文版","volume":"13 1","pages":"103-115"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"通讯和计算机:中英文版","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.17265/1548-7709/2016.03.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The real-time multiprocessor scheduling problem is one of the NP-hard problems. Furthermore, there are no papers which are concerned to heterogeneous multiprocessors system. This paper proposes a new real-time task scheduling algorithm using hGA (hybrid genetic algorithm) on heterogeneous multiprocessor environment. In solution algorithms, the GA (genetic algorithm) and the SA (simulated annealing) are cooperatively used. In this method, the convergence of GA is improved by introducing the probability of SA as the criterion for acceptance of new trial solution. The objective of proposed scheduling algorithm is to minimize total tardiness. The effectiveness of the proposed algorithm is shown through simulation studies. In simulation studies, the results of proposed algorithm show better than that of other algorithms.
基于混合遗传算法的异构多处理器系统实时任务调度
实时多处理器调度问题是np困难问题之一。此外,对异构多处理机系统的研究还没有见过。提出了一种基于混合遗传算法的异构多处理机实时任务调度算法。在求解算法中,采用遗传算法(GA)和模拟退火算法(SA)协同求解。该方法通过引入SA的概率作为新试解接受的准则,提高了遗传算法的收敛性。提出的调度算法的目标是使总延迟最小化。仿真研究表明了该算法的有效性。在仿真研究中,所提算法的效果优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
843
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信