M. Hafeez, R. Shaheen, B. Akram, M. N. Ahmed, Z. Ul-Abdin, S. Haq, S. Din, M. Zeb, M. Khan
{"title":"Green Synthesis of Nickel Oxide Nanoparticles using Populus ciliata Leaves Extract and their Potential Antibacterial Applications","authors":"M. Hafeez, R. Shaheen, B. Akram, M. N. Ahmed, Z. Ul-Abdin, S. Haq, S. Din, M. Zeb, M. Khan","doi":"10.17159/0379-4350/2021/v75a21","DOIUrl":null,"url":null,"abstract":"ABSTRACT Green synthesis of nanoparticles has received a lot of attention from scientists globally because it is eco-friendly, relatively rapid, and a cost-effective method. This work presents a method for the green synthesis of nickel oxide nanoparticles (NiO-NPs) using leaf extracts of Populus ciliata as a reducing and stabilising agent. The synthesised NiO-NPs were characterised by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. It was found that the synthesised NiO-NPs shapes varied, were highly crystalline, and had a face-centred cubic geometry. The calculated crystallite size of the synthesised nanoparticles was 44 nm. Moreover, the antibacterial activity of the synthesised NiO-NPs was also conducted against Gram-positive bacteria (Bacillus subtilis, Bacillus licheniformis) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). Bacillus subtillus showed a maximum inhibition zone of 28.1±1.6 mm, whereas Klebsiella pneumonia showed a minimum inhibition zone of 9.2±0.5 mm. It was also found that the antibacterial activity increased with an increase in the concentration of NiO-NPs. Keywords: antibacterial activity, green synthesis, nanoparticles, NiO, Populus ciliata.","PeriodicalId":49495,"journal":{"name":"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.17159/0379-4350/2021/v75a21","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
ABSTRACT Green synthesis of nanoparticles has received a lot of attention from scientists globally because it is eco-friendly, relatively rapid, and a cost-effective method. This work presents a method for the green synthesis of nickel oxide nanoparticles (NiO-NPs) using leaf extracts of Populus ciliata as a reducing and stabilising agent. The synthesised NiO-NPs were characterised by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. It was found that the synthesised NiO-NPs shapes varied, were highly crystalline, and had a face-centred cubic geometry. The calculated crystallite size of the synthesised nanoparticles was 44 nm. Moreover, the antibacterial activity of the synthesised NiO-NPs was also conducted against Gram-positive bacteria (Bacillus subtilis, Bacillus licheniformis) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). Bacillus subtillus showed a maximum inhibition zone of 28.1±1.6 mm, whereas Klebsiella pneumonia showed a minimum inhibition zone of 9.2±0.5 mm. It was also found that the antibacterial activity increased with an increase in the concentration of NiO-NPs. Keywords: antibacterial activity, green synthesis, nanoparticles, NiO, Populus ciliata.
期刊介绍:
Original work in all branches of chemistry is published in the South African Journal of Chemistry. Contributions in English may take the form of papers, short communications, or critical reviews.