{"title":"Polietileno de baja densidad funcionalizado con un poliéster poliol altamente ramificado maleinizado","authors":"Carlos A. Ararat, Edwin A. Murillo","doi":"10.17230/INGCIENCIA.12.23.7","DOIUrl":null,"url":null,"abstract":"Abstract In this work, low density polyethylene (LDPE) was modified in the melt state with a maleinized hyperbranched polyester polyol (HBPAM), using several proportions of dicumyl peroxide (0.5, 1.0, 1.5 and 2.0 %). Infrared analysis showed the signals of OH, C=O, -COOR and -C=C- groups of the HBPAM in the spectra of the functionalized samples (LDPE-g-HBPAM). Grafting degree (GD) was between 9.14 and 9.82 %. Melt flow index of the samples LDPE-g-HBPAM was lower than that of the LDPE, and it did not exhibit dependency on the dicumyl peroxide content and GI. Except for the sample obtained with a 2.0 % of dicumyl peroxide, all melting temperatures of the samples of LDPE-g-HBPAM were similar to that of the LDPE. The melting enthalpy of the samples LDPE-g-HBPAM decreased with the concentration of dicumyl peroxide and GD. The tensile modulus of these samples was higher than that of LDPE, but the elongation at break was lower","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":"301 1","pages":"127-144"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17230/INGCIENCIA.12.23.7","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/INGCIENCIA.12.23.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract In this work, low density polyethylene (LDPE) was modified in the melt state with a maleinized hyperbranched polyester polyol (HBPAM), using several proportions of dicumyl peroxide (0.5, 1.0, 1.5 and 2.0 %). Infrared analysis showed the signals of OH, C=O, -COOR and -C=C- groups of the HBPAM in the spectra of the functionalized samples (LDPE-g-HBPAM). Grafting degree (GD) was between 9.14 and 9.82 %. Melt flow index of the samples LDPE-g-HBPAM was lower than that of the LDPE, and it did not exhibit dependency on the dicumyl peroxide content and GI. Except for the sample obtained with a 2.0 % of dicumyl peroxide, all melting temperatures of the samples of LDPE-g-HBPAM were similar to that of the LDPE. The melting enthalpy of the samples LDPE-g-HBPAM decreased with the concentration of dicumyl peroxide and GD. The tensile modulus of these samples was higher than that of LDPE, but the elongation at break was lower