Algoritmo memético con operadores de inteligencia artificial para el CARP con inicio y fin no determinado y bi-objetivo

B. Macias, C. Amaya
{"title":"Algoritmo memético con operadores de inteligencia artificial para el CARP con inicio y fin no determinado y bi-objetivo","authors":"B. Macias, C. Amaya","doi":"10.17230/INGCIENCIA.12.23.2","DOIUrl":null,"url":null,"abstract":"Abstract The arc routing problem with a variable starting/ending position (Open Capacitated Arc Routing Problem - OCARP), in its classic version, pursues the best strategy to serve a set of customers located in the network arcs using vehicles. Compared to the Capacitated Arc Routing Problem (CARP), the OCARP lacks of constrains that guarantee that each vehicle ought to start and end the tour at a given vertex (also known as a depot). The aim of this paper is to propose a heuristic to find an efficient frontier for the main objective functions: minimize the number of vehicles and the total cost. Additionally, a hybrid algorithm that complements the genetic algorithm with artificial intelligence operator is proposed.","PeriodicalId":30405,"journal":{"name":"Ingenieria y Ciencia","volume":"12 1","pages":"25-46"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Ciencia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17230/INGCIENCIA.12.23.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The arc routing problem with a variable starting/ending position (Open Capacitated Arc Routing Problem - OCARP), in its classic version, pursues the best strategy to serve a set of customers located in the network arcs using vehicles. Compared to the Capacitated Arc Routing Problem (CARP), the OCARP lacks of constrains that guarantee that each vehicle ought to start and end the tour at a given vertex (also known as a depot). The aim of this paper is to propose a heuristic to find an efficient frontier for the main objective functions: minimize the number of vehicles and the total cost. Additionally, a hybrid algorithm that complements the genetic algorithm with artificial intelligence operator is proposed.
带有人工智能操作符的模因算法,用于不确定的开始和结束和双目标鲤鱼
具有可变起始/结束位置的圆弧路由问题(Open Capacitated arc routing problem - OCARP)的经典版本追求的是利用车辆为位于网络圆弧中的一组客户提供服务的最佳策略。与有能力弧线路由问题(CARP)相比,OCARP缺乏保证每辆车应该在给定顶点(也称为仓库)开始和结束巡回的约束。本文的目的是提出一种启发式方法来寻找主要目标函数的有效边界:最小化车辆数量和总成本。此外,提出了一种将遗传算法与人工智能算子相结合的混合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信