J. D. de Lima, Soheil Zehsaz, J. L. Tavares, M. P. D. de Lima
{"title":"Brightness of point application of fluorescent quinine tracer for surface waters","authors":"J. D. de Lima, Soheil Zehsaz, J. L. Tavares, M. P. D. de Lima","doi":"10.1590/s1413-415220220212","DOIUrl":null,"url":null,"abstract":"Abstract Fluorescent tracers have been widely used in hydrology. Recently, quinine started to be used as a fluorescent tracer for estimating the velocity of surface sheet flows over various soil surface conditions and environments. In the present work, the visibility of the fluorescent tracer (quinine) was assessed for various applications’ forms of the tracer (liquid, ice cube with quinine and soaked sponge). The brightness intensity of all tracer forms was estimated for different hydraulic conditions (hydrostatic, linear, and rotational flows) and for clear water, and water with medium and high suspended sediment loads. Results show that, when used as a flow velocity tracer, liquid quinine solution has to be applied carefully into the water and should better be used on sheet flows, shallow overland flows or shallow still waters. Its visibility in deep and muddy flows is insufficient for surface velocity estimations. The sponge soaked with quinine solution, which partially floats, is better visible in clear waters or low-medium suspended sediment loads, regardless of the water depth. However, for high turbulence and rotational flows, the soaked sponge sinks and is no longer visible. The ice cubes showed better visibility in all tested flow water depths and suspended sediment loads, although, in very shallow depths (of millimetres), ice cubes cannot be used because they might not follow adequately the fluid motion, which also applies to the sponge.","PeriodicalId":11619,"journal":{"name":"Engenharia Sanitaria E Ambiental","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engenharia Sanitaria E Ambiental","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1590/s1413-415220220212","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Fluorescent tracers have been widely used in hydrology. Recently, quinine started to be used as a fluorescent tracer for estimating the velocity of surface sheet flows over various soil surface conditions and environments. In the present work, the visibility of the fluorescent tracer (quinine) was assessed for various applications’ forms of the tracer (liquid, ice cube with quinine and soaked sponge). The brightness intensity of all tracer forms was estimated for different hydraulic conditions (hydrostatic, linear, and rotational flows) and for clear water, and water with medium and high suspended sediment loads. Results show that, when used as a flow velocity tracer, liquid quinine solution has to be applied carefully into the water and should better be used on sheet flows, shallow overland flows or shallow still waters. Its visibility in deep and muddy flows is insufficient for surface velocity estimations. The sponge soaked with quinine solution, which partially floats, is better visible in clear waters or low-medium suspended sediment loads, regardless of the water depth. However, for high turbulence and rotational flows, the soaked sponge sinks and is no longer visible. The ice cubes showed better visibility in all tested flow water depths and suspended sediment loads, although, in very shallow depths (of millimetres), ice cubes cannot be used because they might not follow adequately the fluid motion, which also applies to the sponge.