{"title":"A DISCONTINUOUS FUTURE FOR NUMERICAL MODELLING IN GEOMECHANICS","authors":"P. Cundall","doi":"10.1680/GENG.2001.149.1.41","DOIUrl":null,"url":null,"abstract":"Finite-element or finite-difference methods are commonly used in geomechanics to model the response of soil or rock at an engineering site. These methods assume that the material is a continuum (although known discontinuities can be included explicitly). There are two drawbacks with continuum methods. Firstly, an appropriate stress-strain law for the material may not exist, or the law may be excessively complicated with many obscure parameters. Secondly, the natural development of cracks and rupture surfaces is not well-handled by continuum approaches. It is suggested that the future trend for numerical modelling in soil and rock may consist of the replacement of continuum methods by particle methods. Assemblies of discrete particles (bonded together to represent rock, and unbonded to represent soil) capture the complicated behaviour of actual material with simple assumptions and few parameters at the micro level. Complex overall behaviour arises as an emergent property of the assembly. The application of...","PeriodicalId":45150,"journal":{"name":"Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1680/GENG.2001.149.1.41","citationCount":"265","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/GENG.2001.149.1.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 265
Abstract
Finite-element or finite-difference methods are commonly used in geomechanics to model the response of soil or rock at an engineering site. These methods assume that the material is a continuum (although known discontinuities can be included explicitly). There are two drawbacks with continuum methods. Firstly, an appropriate stress-strain law for the material may not exist, or the law may be excessively complicated with many obscure parameters. Secondly, the natural development of cracks and rupture surfaces is not well-handled by continuum approaches. It is suggested that the future trend for numerical modelling in soil and rock may consist of the replacement of continuum methods by particle methods. Assemblies of discrete particles (bonded together to represent rock, and unbonded to represent soil) capture the complicated behaviour of actual material with simple assumptions and few parameters at the micro level. Complex overall behaviour arises as an emergent property of the assembly. The application of...
期刊介绍:
The objectives of the Association shall be the promotion of co-operation among geotechnical societies in SE Asia; and the assistance to member societies who have limited number of members. Now there is only one combined web titled: AGSSEA-SEAGS. SEAGS & AGSSEA encourage the submission of scholarly and practice-oriented articles to its journal. The journal is published quarterly. Both sponsors of the journal, the Southeast Asian Geotechnical Society and the Association of Geotechnical Societies in Southeast Asia, promote the ideals and goals of the International Society of Soil Mechanics and Geotechhnical Engineering in fostering communications, developing insights and enabling the advancement of the geotechnical engineering discipline.