Statistical Relational Learning to Predict Primary Myocardial Infarction from Electronic Health Records

Jeremy C. Weiss, Sriraam Natarajan, P. Peissig, C. McCarty, David Page
{"title":"Statistical Relational Learning to Predict Primary Myocardial Infarction from Electronic Health Records","authors":"Jeremy C. Weiss, Sriraam Natarajan, P. Peissig, C. McCarty, David Page","doi":"10.1609/aaai.v26i2.18981","DOIUrl":null,"url":null,"abstract":"Electronic health records (EHRs) are an emerging relational domain with large potential to improve clinical outcomes. We apply two statistical relational learning (SRL) algorithms to the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and suggest how our methods can augment current epidemiological practices.","PeriodicalId":74524,"journal":{"name":"Proceedings of the ... Innovative Applications of Artificial Intelligence Conference. Innovative Applications of Artificial Intelligence Conference","volume":"2012 1","pages":"2341-2347"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Innovative Applications of Artificial Intelligence Conference. Innovative Applications of Artificial Intelligence Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaai.v26i2.18981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Electronic health records (EHRs) are an emerging relational domain with large potential to improve clinical outcomes. We apply two statistical relational learning (SRL) algorithms to the task of predicting primary myocardial infarction. We show that one SRL algorithm, relational functional gradient boosting, outperforms propositional learners particularly in the medically-relevant high recall region. We observe that both SRL algorithms predict outcomes better than their propositional analogs and suggest how our methods can augment current epidemiological practices.
从电子健康记录中预测原发性心肌梗死的统计关系学习
电子健康记录(EHRs)是一个新兴的关系领域,具有改善临床结果的巨大潜力。我们应用两种统计关系学习(SRL)算法来预测原发性心肌梗死。我们证明了一种SRL算法,关系函数梯度增强,特别是在医学相关的高回忆区域优于命题学习者。我们观察到两种SRL算法都比它们的命题类似物更好地预测结果,并建议我们的方法如何增强当前的流行病学实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信