A Prediction Method for the Dose Rate of Fuel Debris Depending on the Constituent Elements

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
K. Terashima, K. Okumura
{"title":"A Prediction Method for the Dose Rate of Fuel Debris Depending on the Constituent Elements","authors":"K. Terashima, K. Okumura","doi":"10.15748/JASSE.8.73","DOIUrl":null,"url":null,"abstract":". In 2021, fuel debris samplings are planned to start as part of a step-by-step process at the Fukushima Daiichi nuclear power station. The dose rate of the fuel debris for safety treatments of the fuel debris should be predicted. However, various elements are mixed in the fuel debris, and thus predicting the dose rate will be challenging. Therefore, we conducted a large number of Monte Carlo radiation transport simulations for cases where parameters such as fuel debris size, composition, and density were significantly changed. Consequently, we obtained a simple and analytical formula that can predict the dose rate using a minimum number of parameters.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/JASSE.8.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

. In 2021, fuel debris samplings are planned to start as part of a step-by-step process at the Fukushima Daiichi nuclear power station. The dose rate of the fuel debris for safety treatments of the fuel debris should be predicted. However, various elements are mixed in the fuel debris, and thus predicting the dose rate will be challenging. Therefore, we conducted a large number of Monte Carlo radiation transport simulations for cases where parameters such as fuel debris size, composition, and density were significantly changed. Consequently, we obtained a simple and analytical formula that can predict the dose rate using a minimum number of parameters.
基于组成元素的燃料碎片剂量率预测方法
. 2021年,计划开始对福岛第一核电站进行燃料碎片取样,这是逐步进行的过程的一部分。应预测燃料碎片的剂量率,以便对燃料碎片进行安全处理。然而,各种元素混合在燃料碎片中,因此预测剂量率将是具有挑战性的。因此,我们对燃料碎片大小、组成和密度等参数发生显著变化的情况进行了大量蒙特卡罗辐射输运模拟。因此,我们得到了一个简单的解析式,可以用最少的参数数来预测剂量率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信