An efficient approach for solving saddle point problems using block structure

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Hiroto Tadano, Shota Ishikawa
{"title":"An efficient approach for solving saddle point problems using block structure","authors":"Hiroto Tadano, Shota Ishikawa","doi":"10.15748/JASSE.8.114","DOIUrl":null,"url":null,"abstract":"This paper focuses on saddle point problems with a 2-by-2 block coefficient matrix. When the number of columns in the upper-right block and the number of rows in the lower-left block of the coefficient matrix is large, the convergence behavior of Krylov subspace methods for the saddle point problems tends to be poor even if the upper-left block is a well-conditioned matrix. In this paper, an efficient approach for solving the saddle point problems using block structure of the problems is proposed. The most time-consuming part of our proposed approach is the solution of a linear system with multiple right-hand sides. To solve the linear system with multiple right-hand sides efficiently, we propose to apply Block Krylov subspace methods to this linear system. Numerical experiments show that the proposed approach with Block Krylov subspace methods can solve the saddle point problems more efficiently than the conventional approach in terms of the number of iterations and the computation time.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/JASSE.8.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on saddle point problems with a 2-by-2 block coefficient matrix. When the number of columns in the upper-right block and the number of rows in the lower-left block of the coefficient matrix is large, the convergence behavior of Krylov subspace methods for the saddle point problems tends to be poor even if the upper-left block is a well-conditioned matrix. In this paper, an efficient approach for solving the saddle point problems using block structure of the problems is proposed. The most time-consuming part of our proposed approach is the solution of a linear system with multiple right-hand sides. To solve the linear system with multiple right-hand sides efficiently, we propose to apply Block Krylov subspace methods to this linear system. Numerical experiments show that the proposed approach with Block Krylov subspace methods can solve the saddle point problems more efficiently than the conventional approach in terms of the number of iterations and the computation time.
用块结构求解鞍点问题的一种有效方法
本文主要研究2 × 2块系数矩阵的鞍点问题。当系数矩阵的右上分块列数和左下分块行数较大时,即使左上分块是良条件矩阵,Krylov子空间方法求解鞍点问题的收敛性往往较差。本文提出了一种利用问题的块结构求解鞍点问题的有效方法。我们提出的方法中最耗时的部分是具有多个右侧的线性系统的解。为了有效地求解具有多个右手边的线性系统,我们提出将块Krylov子空间方法应用于该线性系统。数值实验表明,基于块Krylov子空间方法的鞍点问题求解在迭代次数和计算时间上都优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信