Estimation of radiation source distribution using machine learning with γ ray energy spectra

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Takero Uemura, K. Yamaguchi
{"title":"Estimation of radiation source distribution using machine learning with γ ray energy spectra","authors":"Takero Uemura, K. Yamaguchi","doi":"10.15748/jasse.7.71","DOIUrl":null,"url":null,"abstract":". A method is proposed for estimating the original radiation source distribution by machine learning using the dose and energy spectrum of γ rays emitted from radiation sources placed at various positions. This method does not require complicated parameter set-tings and can be also applied when there is a shield liked Pb between the radiation source and the measurement point. The estimation results displayed the original radiation source distribution with high accuracy. It is expected to be used for decontamination and decommissioning by developing this method.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/jasse.7.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

. A method is proposed for estimating the original radiation source distribution by machine learning using the dose and energy spectrum of γ rays emitted from radiation sources placed at various positions. This method does not require complicated parameter set-tings and can be also applied when there is a shield liked Pb between the radiation source and the measurement point. The estimation results displayed the original radiation source distribution with high accuracy. It is expected to be used for decontamination and decommissioning by developing this method.
基于γ射线能谱的机器学习估计辐射源分布
. 提出了一种利用不同位置辐射源发出的γ射线的剂量和能谱,通过机器学习估计原始辐射源分布的方法。这种方法不需要复杂的参数设置,当辐射源和测量点之间存在像Pb这样的屏蔽时也可以应用。估计结果显示了原始辐射源的分布,精度较高。通过开发这种方法,有望将其用于净化和退役。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信