Numerical verification for positive solutions of Allen–Cahn equation using sub- and super-solution method

IF 0.4 Q4 ENGINEERING, MULTIDISCIPLINARY
Y. Matsushima, Kazuaki Tanaka, S. Oishi
{"title":"Numerical verification for positive solutions of Allen–Cahn equation using sub- and super-solution method","authors":"Y. Matsushima, Kazuaki Tanaka, S. Oishi","doi":"10.15748/jasse.7.136","DOIUrl":null,"url":null,"abstract":"This paper describes a numerical verification method for positive solutions of the Allen–Cahn equation on the basis of the suband super-solution method. Our application range extends to global-in-time solutions that converge or sufficiently approach to stable stationary solutions. The proposed verification method has almost the same memory requirements as the computation for obtaining an approximate solution.","PeriodicalId":41942,"journal":{"name":"Journal of Advanced Simulation in Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Simulation in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15748/jasse.7.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes a numerical verification method for positive solutions of the Allen–Cahn equation on the basis of the suband super-solution method. Our application range extends to global-in-time solutions that converge or sufficiently approach to stable stationary solutions. The proposed verification method has almost the same memory requirements as the computation for obtaining an approximate solution.
Allen-Cahn方程正解的子解和超解数值验证
本文在子解和超解方法的基础上,给出了Allen-Cahn方程正解的数值验证方法。我们的应用范围扩展到收敛或充分接近稳定的固定解决方案的全局实时解决方案。所提出的验证方法与求近似解的计算具有几乎相同的内存要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信