{"title":"Finite element discretization of semilinear acoustic wave equations with kinetic boundary conditions","authors":"M. Hochbruck, Jan Leibold","doi":"10.1553/ETNA_VOL53S522","DOIUrl":null,"url":null,"abstract":"We consider isoparametric finite element discretizations of semilinear acoustic wave equations with kinetic boundary conditions and derive a corresponding error bound as our main result. The difficulty is that such problems are stated on domains with curved boundaries and this renders the discretizations nonconforming. Our approach is to provide a unified error analysis for nonconforming space discretizations for semilinear wave equations. In particular, we introduce a general, abstract framework for nonconforming space discretizations in which we derive a-priori error bounds in terms of interpolation, data and conformity errors. The theory applies to a large class of problems and discretizations that fit into the abstract framework. The error bound for wave equations with kinetic boundary conditions is obtained from the general theory by inserting known interpolation and geometric error bounds into the abstract error result of the unified error analysis.","PeriodicalId":50536,"journal":{"name":"Electronic Transactions on Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Transactions on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL53S522","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 9
Abstract
We consider isoparametric finite element discretizations of semilinear acoustic wave equations with kinetic boundary conditions and derive a corresponding error bound as our main result. The difficulty is that such problems are stated on domains with curved boundaries and this renders the discretizations nonconforming. Our approach is to provide a unified error analysis for nonconforming space discretizations for semilinear wave equations. In particular, we introduce a general, abstract framework for nonconforming space discretizations in which we derive a-priori error bounds in terms of interpolation, data and conformity errors. The theory applies to a large class of problems and discretizations that fit into the abstract framework. The error bound for wave equations with kinetic boundary conditions is obtained from the general theory by inserting known interpolation and geometric error bounds into the abstract error result of the unified error analysis.
期刊介绍:
Electronic Transactions on Numerical Analysis (ETNA) is an electronic journal for the publication of significant new developments in numerical analysis and scientific computing. Papers of the highest quality that deal with the analysis of algorithms for the solution of continuous models and numerical linear algebra are appropriate for ETNA, as are papers of similar quality that discuss implementation and performance of such algorithms. New algorithms for current or new computer architectures are appropriate provided that they are numerically sound. However, the focus of the publication should be on the algorithm rather than on the architecture. The journal is published by the Kent State University Library in conjunction with the Institute of Computational Mathematics at Kent State University, and in cooperation with the Johann Radon Institute for Computational and Applied Mathematics of the Austrian Academy of Sciences (RICAM).