Pablo G. T. Lepe, N. Tucker, Lyall D. Simmons, A. Watson, A. Fairbanks, M. Staiger
{"title":"Sub-micron sized saccharide fibres via electrospinning","authors":"Pablo G. T. Lepe, N. Tucker, Lyall D. Simmons, A. Watson, A. Fairbanks, M. Staiger","doi":"10.1515/esp-2016-0001","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the production of continuous submicron diameter saccharide fibres is shown to be possible using the electrospinning process. The mechanism for the formation of electrospun polymer fibres is usually attributed to the physical entanglement of long molecular chains. The ability to electrospin continuous fibre from a low molecular weight saccharides was an unexpected phenomenon. The formation of sub-micron diameter “sugar syrup” fibres was observed in situ using highspeed video. The trajectory of the electrospun saccharide fibre was observed to follow that typical of electrospun polymers. Based on initial food grade glucose syrup tests, various solutions based on combinations of syrup components, i.e. mono-, di- and tri-saccharides, were investigated to map out materials and electrospinning conditions thatwould lead to the formation of fibre. Thiswork demonstrated that sucrose exhibits the highest propensity for fibre formation during electrospinning amongst the various types of saccharide solutions studied. The possibility of electrospinning low molecular weight saccharides into sub-micron fibres has implications for the electrospinability of supramolecular polymers and other biomaterials.","PeriodicalId":92629,"journal":{"name":"Electrospinning","volume":"1 1","pages":"1 - 9"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/esp-2016-0001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrospinning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/esp-2016-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract In this work, the production of continuous submicron diameter saccharide fibres is shown to be possible using the electrospinning process. The mechanism for the formation of electrospun polymer fibres is usually attributed to the physical entanglement of long molecular chains. The ability to electrospin continuous fibre from a low molecular weight saccharides was an unexpected phenomenon. The formation of sub-micron diameter “sugar syrup” fibres was observed in situ using highspeed video. The trajectory of the electrospun saccharide fibre was observed to follow that typical of electrospun polymers. Based on initial food grade glucose syrup tests, various solutions based on combinations of syrup components, i.e. mono-, di- and tri-saccharides, were investigated to map out materials and electrospinning conditions thatwould lead to the formation of fibre. Thiswork demonstrated that sucrose exhibits the highest propensity for fibre formation during electrospinning amongst the various types of saccharide solutions studied. The possibility of electrospinning low molecular weight saccharides into sub-micron fibres has implications for the electrospinability of supramolecular polymers and other biomaterials.